
www.manaraa.com

VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

Computer Science
PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

A Web-Based Programming
Learning Environment

Anna Maria Luxton

Supervisors: Robert Biddle and James Noble

Submitted in partial fulfilment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract

Learning to program is hard. Education in Computer Science has suffered a
long history of low levels of retention particularly amongst females, as well as
generally high failure rates. This report presents JavanOwl, a web-based pro-
gramming tool we have built in order to address these issues. We propose that
through the use of JavanOwl, novice programmers will be able to gain a sense
of familiarity and confidence with basic programming during the early stages of
their education in Computer Science. Evidence in the form of actual experiences
and usability testing shows us that JavanOwl is successful in achieving its aims.

www.manaraa.com

Acknowledgments

Firstly, I would like to thank my supervisors, Robert Biddle and James Noble, for constantly
providing helpful and constructive criticism. Their joint sense of humour was both relaxing
and encouraging. Secondly, thanks to all the other ‘hermits’ of Memphis for always being
there in every sense of the phrase. In particular, I wish to acknowledge Jeromé Dolman,
Donald Gordon and Francis Saul for their incredible amount of knowledge and kindness. I
am eternally thankful for your contributions to this research project. Last but not least, I wish
to thank my four kind evaluators for having been very helpful and patient in completing
their evaluations of JavanOwl.

i

www.manaraa.com

Contents

1 Introduction 1

2 Background 3
2.1 Education — The Current Situation . 3
2.2 Prior Familiarity . 3
2.3 Online Learning Approach . 4
2.4 Visualisations Approach . 4
2.5 Related Work . 5

2.5.1 BlueJ . 5
2.5.2 LearningWorks . 6
2.5.3 Jeroo . 7
2.5.4 Jeliot . 7
2.5.5 www.publicstaticvoidmain.com 8
2.5.6 ELP . 8

2.6 Summary . 9

3 Design 10
3.1 Web Technology . 10

3.1.1 Java Applets . 11
3.1.2 JavaScript . 12
3.1.3 JSP and JavaBeans . 12

3.2 Visualisation Technology . 13
3.2.1 Event-Driven Approach . 14
3.2.2 Aspect-Oriented Programming Approach 14
3.2.3 AspectJ . 15
3.2.4 Image Technology . 16

3.3 Conclusion . 16

4 JavanOwl 17
4.1 Goals . 17
4.2 JavanOwl . 17
4.3 JavanOwl Usage: A Demonstrative Scenario 19
4.4 Why Java? . 20
4.5 Educational Practices Embedded in JavanOwl 20
4.6 A Breakdown of The JavanOwl Application . 20

4.6.1 Before entering the system . 21
4.6.2 Writing and Saving a Program . 22
4.6.3 Running a Program . 24
4.6.4 Errors in user code . 25
4.6.5 Writing, Saving and Using a Class . 26

ii

www.manaraa.com

4.6.6 Studying Data Structures . 27
4.6.7 Managing Your Files . 30
4.6.8 User Forum . 30

4.7 Program Code Visualisations . 30
4.8 JavanOwl Library and API . 32

4.8.1 Classes . 32
4.8.2 JavaDocs and Related Documentation 32

5 Implementation 33
5.1 System Architecture . 33
5.2 Compile and Run Technology . 33

5.2.1 Security . 34
5.2.2 Code Samples . 35

5.3 Server Side Storage . 41
5.4 AOP and AspectJ for Program Code Visualisation 41

5.4.1 GIF Generation . 42

6 Discussion 45
6.1 Web advantages . 45
6.2 JSP advantages . 46
6.3 AspectJ advantages . 46
6.4 Visualisation using AspectJ . 46
6.5 JavanOwl visualisations . 47
6.6 Scalability . 47

7 Experience and Usability Studies 49
7.1 Science Experience . 49
7.2 Science Experience Results . 50

7.2.1 Observations . 50
7.2.2 Evaluation Survey Results . 51

7.3 Heuristic Evaluation . 52
7.3.1 Experiment . 54
7.3.2 Results and Evaluation Summary . 56

8 Conclusions 59
8.1 Contributions . 59
8.2 Comparison With Related Work . 60
8.3 Future Work . 60

8.3.1 JavanOwl API . 60
8.3.2 Traces and Visualisation Library . 61
8.3.3 Support for Visualistaions of User-Written Classes 61
8.3.4 Interactivity in User Programs . 61

A JavanOwl++ 62
A.1 Overview of Functionality . 62

A.1.1 Object Creation . 62
A.1.2 Object Manipulation . 62

A.2 How JavanOwl++ Uses JavanOwl Technology 64

iii

www.manaraa.com

Figures

2.1 BlueJ - The Interactive Java Environment [1]. 6
2.2 LearningWorks - An example LearningBook page [2]. 7
2.3 Jeroo - The User Interface [3]. 8
2.4 ELP - Example ELP Exercise [4]. 9

4.1 JavanOwl in Use . 18
4.2 JavanOwl Homepage . 21
4.3 User enters code into the web form and saves it with a filename. 22
4.4 Example of code that uses library objects, written in JavanOwl 23
4.5 Example of code that outputs text, written in JavanOwl 23
4.6 JavanOwl system after having run a program that outputs program code vi-

sualisations . 24
4.7 JavanOwl system after having run a textual program 25
4.8 Running user code that contains a syntactic error 26
4.9 Example class written in JavanOwl . 27
4.10 JavanOwl system after having run a data structure program 28
4.11 Example of code that uses the Stack class, written in JavanOwl 29
4.12 User attempting to delete one of their programs. 30
4.13 JavanOwl animation of a user-written program that uses the Stack class. . . . 31

5.1 JavanOwl system architecture. 33
5.2 Transformation of user code that uses Person and House classes into JSP . . . 36
5.3 Transformation of user code that uses Stack class into JSP 37
5.4 Transformation of user code that outputs text into JSP 38
5.5 Transformation of user code that uses a user-defined class into JSP 40
5.6 An example pointcut defined for JavanOwl, written in AspectJ 41
5.7 An advice defined on the changePersonPC pointcut 42
5.8 Example of code that uses library objects, written in JavanOwl 43
5.9 JavanOwl animation of a user program that uses the JavanOwl API 44

7.1 General computer Usage . 51
7.2 Writing code using JavanOwl . 52
7.3 Jakob Nielsen’s Ten Usability Heuristics . 53
7.4 Severity Ratings . 54
7.5 Scenario used in Heuristic Evaluation of JavanOwl 55
7.6 Heuristic Evaluation of JavanOwl Table of Results 58

A.1 Object Creation in JavanOwl++ . 63
A.2 Object Manipulation in JavanOwl++ . 65

iv

www.manaraa.com

Chapter 1

Introduction

A large proportion of students who enter introductory Computer Science courses have
never had any experience in programming. For a student entering a CS1 course without any
background in Computer Science, the course material can be very hard and overwhelming.
This has been identified as one of the main causes of the very low level of retention and an
equally high level of failure in CS1 courses worldwide.

The primary goal of this project is to support the early stages of learning to program, giv-
ing beginners the ability to experience a sense of familiarity and satisfaction with program-
ming before or early on during their course. Tools specifically formulated to help students
in the early stages of learning to program do exist, but they do not always target the core
problems and are often not easily accessible. We aim to create a ubiquitous and simple pro-
gramming environment that emphasizes fundamental programming principles. This will
be accomplished by means of an attractive online service that would allow students any-
where to practice programming, facilitating the somewhat arduous process of learning to
program.

A secondary goal of this project is to use program code visualisations for educational
purposes. Visualisations have been used to examine the complex inner workings of program
code since the birth of computers. Therefrom, both novice programmers and experienced
software developers have employed different forms of visualisations of program code to
better acquaint themselves with the intricacies of the code. One difficulty in this area is the
actual collection of the information that is to be visually displayed. Often this information is
spread across different classes and objects involved in the code. This type of problem is more
commonly known as a ‘cross-cutting concern’. Aspect-oriented programming is a paradigm
which has been developed to help monitor information affected by cross-cutting concerns.
The use of aspect-oriented programming as a program monitoring technique to aid in the
creation of program code visualisations in this project has therefore been examined.

This report presents JavanOwl, a ubiquitous web-based programming environment de-
signed to support novice programmers to learn how to program. JavanOwl makes use of
visualisations to teach Java to novice programmers. Essentially, JavanOwl is a system that
provides the type of service that “Hotmail” provides for email, but for Java programs. The
intended audience for JavanOwl are learners before CS1, or learners having difficulty with
CS1: people who will benefit from support to learn the basics of programming. The main
technologies we explored in order to create JavanOwl are JavaServer Pages (JSP) [5], Jav-
aBeans, JDBC, an SQL database, Aspect-Oriented Programming (AOP) [6] and HTML, all
used in conjunction with a JavaServer Pages “Tomcat” web server.

The structure of this report is as follows: in the next chapter, a review of the background
to this work is presented. Chapter 3 explores the different technologies currently available
to support the key design elements of a new educational programming tool. This is followed

1

www.manaraa.com

by Chapter 4, which presents and explores JavanOwl; the system created as a result of the
research conducted. Chapter 5 gives implementation details of how JavanOwl was built,
while Chapter 6 evaluates various aspects of the technologies used in building the system.
Chapter 7 gives a descant of some actual experience in using the system with learners, to-
gether with the results of usability testing. Finally, Chapter 8 provides a summary, presents
the contributions to knowledge that this project has made and discusses the opportunities
for future work on JavanOwl. Included in Appendix A is a description of JavanOwl++,
an educational programming tool that was built using JavanOwl technology but serves a
different purpose.

2

www.manaraa.com

Chapter 2

Background

2.1 Education — The Current Situation

For a beginner, learning to program is hard. Because of this, the effectiveness of education in
Computer Science has been under careful observation for many years. International studies
of programming performance have produced compounding evidence that students’ level
of programming skills are not commensurate with their instructors’ expectations [7], that
overall retention rates are low [8], and that overall failure rates are high compared to other
disciplines (as high as 30%) [9]. The reasons for these alarming facts are various: there
are many difficulties encountered by beginners in Computer Science — for example, the
syntax of a programming language, the inner workings of the computer behind the scenes
[10], and the mathematics behind these concepts, all framed by the abstract concepts of
the programming paradigm, such as object-orientation (OO) [11, 12]. This high myriad of
complex information that students in introductory Computer Science courses are expected
to absorb is exceedingly high. Within the first few weeks of a CS1 course, many students
feel intimidated and disatisfied with their progress, and subsequently quit the course.

2.2 Prior Familiarity

Typically, students in introductory Computer Science courses can be classified into 3 differ-
ent categories: novice programmers, experienced programmers and average programmers
[13]. Naturally, this leads courses to be targeted at the middle ground — the ‘average’ group,
which therefore disadvantages the disproportionately large group of novice programmers
(by moving too fast) as well as the relatively small group of experienced programmers (by
moving too slow). For those students who unfortunately find themselves in the novice
group, having no prior experience and little confidence with computers, these courses can
be quite overwhelming.

Research has shown that the most useful predictor of success in introductory Computer
Science courses is prior familiarity with programming concepts, and that a high level of
success is difficult to achieve without this prior knowledge [14]. Unfortunately, many high
schools do not offer Computer Science as a subject. According to Rodger and Walker [15],
most high school girls do not even know what Computer Science is. This lack of prior fa-
miliarity appears to affect women in particular, as they tend to have less exposure and less
confidence with computers than men do upon entering Computer Science courses. This is
supported by studies conducted at Victoria University that also showed that women with-
draw or fail at higher rates than men, and are probably more anxious, less confident and
have a poorer attitude towards computers in comparison to men as a result of gender-

3

www.manaraa.com

stereotyping that has occurred prior to their arrival at University [16]. For social reasons,
men appear to engage in more computer related activities with their friends, play computer
games and explore the Internet, all of which help them gain a higher level of confidence
with computers before their arrival at University. The existing relative imbalance of males
and females in Computer Science reciprocates this fact [17].

Overall, this means that a large proportion of students entering introductory Computer
Science courses at tertiary level, in particular women, fall into an educationally disadvan-
taged ‘novice’ group. Despite the efforts of educators in the field, students who lack this
unspoken but perhaps essential ‘pre-requisite’ of some prior experience with programming
are less likely to succeed in introductory Computer Science courses. Attempts to implement
retention strategies, varying in methodology from large changes such as altering the text-
book and course content, providing more help and reducing the male-orientation to small
aesthetic changes such as lab atmosphere, have not addressed these earlier problems [18].

2.3 Online Learning Approach

Because of the large amount of information that students are expected to internalize during
introductory Computer Science courses, the pace of these courses tends to be very fast. Con-
cepts and skills are covered briefly simply in order to cover all the required material in time.
Novice programmers may fall behind very quickly, constantly trying to catch up with topics
they did not fully understand the first time. Some courses arrange tutorials to specifically
address difficult course-related material. However, these are scheduled at specific times, so
if a student misses a tutorial, they have missed the only ‘outside of class’ help they could
have hoped for on a specific topic. The result is that students are not given sufficient or
adequate support for these courses. Consequently, students don’t learn as much nor as well
as they potentially could, given more help. Students must be given the ability to access, out-
side of lecture and tutorial time, vital scaffolding and support regarding a particular course
which allows them to practice and reinforce the concepts they are being taught in class. The
very nature of online teaching objects allows for this type of support to be provided. In
terms of novice programmers entering a Computer Science course, a supportive and well
managed system of self-paced learning is crucial for their success in the course.

Another problem faced by education in Computer Science is the large need for resources.
Students require access to textbooks, computers and software in order to experience writ-
ing code as well as compiling, debugging, and running programs. Even if a student did
develop an interest in computer programming, they would still need access to these re-
sources which may be expensive and unavailable to them. This puts a large demand on
(especially primary or secondary) educational institutions’ computing infrastructure. On-
line learning tools address these issues by helping reduce the need for so many expensive
resources: textbooks are no longer as crucial to the learning process, fewer computers are
needed, hardware, platform and software requirements are lessened and teacher-student
time becomes less important. Providing access to an online system would help reduce the
demand on institutions’ computing infrastructure as students could work collaboratively in
online communities with the necessary resources and materials provided automatically by
the system.

2.4 Visualisations Approach

Visualisations are widely used as general teaching aids in many different disciplines to help
students understand the concepts being taught [19]. It is common in Computer Science for

4

www.manaraa.com

visual depictions to be used to help communicate the complex inner workings of program
code [12]. According to Blaine A. Price, Ronald M. Baecker and Ian S. Small [20], the usage
of visual representations in understanding computer programs is by no means new. In
1947, Goldstein and von Neumann exposed the usefulness of flowcharts. In 1959, Haibt
advanced this concept by developing a system that could draw flowcharts automatically
from Fortran or assembly language programs. In 1963, Knuth expanded further on this
by developing a system which integrated documentation with the source code and also
automatically generated flowcharts. Since then, there have been major advancements in the
use and applicability of software visualisations. Improvements in technology have enabled
more diverse, more detailed, and more immediate visualisations of program code to be
actualised and used with increasing ease.

Visualisations help students form the link between the theoretical concepts and more
concrete ideas, as well as helping form the link between what the program output is and
what actually happened behind the scenes. Writing a line of code and immediately seeing
a change in the image that is generated provides an effect that helps motivate the link be-
tween syntactic commands and their semantic effect. Tanimoto describes these immediate
visualisations of programs at runtime using the term ‘Liveness’ [21] of which there are four
levels. These levels differ in the immediacy of the visual change in the visualised image
of the program. The quicker the corresponding change is viewable, the higher the level of
‘Liveness’. A system that incorporates level 4 ‘Liveness’ visualisations is a system where
any change in the program is reflected in real-time in the visualisation. Such immediacy
in visibility of cause and effect is important in education as it highlights precisely what the
effect of a certain change was, leaving little room for confusion. Obviously, in terms of edu-
cation, the use of this type of visualisation is ideal — anything that helps ease the steepness
of the learning curve and lessen the confusion felt by students, by providing an alternative
way of looking at a complex concept, should be taken advantage of as much as possible.

Unfortunately, there is a problem involved in providing comprehensive visualisations:
it takes considerable time to individually hand draw and explain effective diagrams of code,
especially if a hand version of level 4 ’Liveness’ is to be employed. There simply isn’t enough
time for the teachers and tutors of these introductory Computer Science courses to be draw-
ing visualisations of all the subject matter they cover if they are to cover all the required
material during the specified duration of the course.

2.5 Related Work

There are a number of existing educational programming tools that incorporate program
visualisations and/or function online. Below is a description of six such tools, together
with any major advantages and disadvantages that have been identified in the design and
implementation of their frameworks.

2.5.1 BlueJ

BlueJ is an educational programming tool that is designed to teach object-orientation to
beginners. The BlueJ environment was developed as part of a university research project
about teaching object-orientation to beginners. It is being developed and maintained by a
joint research group at Deakin University, Melbourne, Australia, the Mærsk Institute at the
University of Southern Denmark, and the University of Kent in Canterbury, UK. It uses the
Unified Modelling Language (UML) to visualise code. Code can either be written by hand or
through the use of class diagrams as shown in Figure 2.1. Through an interactive interface,
users can create objects and run methods on them, all by clicking on diagrams and through

5

www.manaraa.com

pop-up menus. It also includes a simple but effective debugger. Unfortunately, although
free, BlueJ does not run over the Internet so users must download and install this system,
as well as the Java 2 Platform, Standard Edition (J2SE). Users are therefore constrained to
working on the same workstation and/or copying their files to disk and installing BlueJ on
every machine they plan to work on.

Figure 2.1: BlueJ - The Interactive Java Environment [1].

2.5.2 LearningWorks

LearningWorks is a learning environment that aims to teach ideas about computing as well
as software systems architectures [2]. The LearningWorks project was started by Adele
Goldberg and others in 1994 in response to an underlying problem with respect to build-
ing large maintainable software systems amongst corporate users of object technology. The
basic conclusion was that these users needed to be targeted before reaching the corporate
level; while students, they needed to have more experience with system building concepts
and practices. This needed to be provided without increasing the need for teacher-student
interaction [22].

LearningWorks was created as a solution to this problem. It is based on the Smalltalk
programming language and is a highly organized self-contained teaching unit, structured
as four frameworks: a LearningBook presentation and interaction framework that is meant
to support the basic user model, a programming framework that enables users to write
code using a library of reusable software components, a framework to allow the creation of
LearningBooks and a communications framework to allow students to work collaboratively.

Users learn through the use of LearningBooks. Each LearningBook consists of pages that
contain activities or applications that students interact with in order to learn more about a
certain topic. Some pages may contain programming tools for students to explore existing
object definitions or write new ones, such as the one shown in Figure 2.2. Since Learn-
ingBook sections and pages are self-contained components, they can be reused by other
LearningBook authors. LearningWorks uses visualisation to show object interaction within
the system, as well as more detailed views of the implementation of objects. It does not,
however, run over the Internet. It must be downloaded and installed on the client machine,
constraining the user to one computer unless they copy their files to other machines.

6

www.manaraa.com

Figure 2.2: LearningWorks - An example LearningBook page [2].

2.5.3 Jeroo

Jeroo is an integrated development environment inspired by Karel the Robot [23] and its
descendants. The Jeroo programming system has a simple syntax that provides a smooth
transition to either Java or C++ [24]. Its design is straightforward and the system covers only
a small scope of material aiming to help novice programmers maintain their confidence in
the early stages of introductory Computer Science courses. Jeroo helps students learn about
the instantiation and use of objects, how to design and write methods and about common
control structures. The interface consists of a single-screen development environment that
is structured so that students enter or edit code in a left hand panel and witness the changes
in a visual animated representation of their ‘virtual’ world in the right hand panel of the
screen (see Figure 2.3). One disadvantage of Jeroo is that it must be installed and run on the
client machine. This imposes the requirement that the user must continually work on one
workstation unless they copy their files to another computer that has also Jeroo installed on
it.

2.5.4 Jeliot

One online system for teaching Java is Jeliot. It enables students to write source code and
get back an animation of their code, generated automatically from the code itself. Jeliot is
structured as a server application that works together with client Java applets so that it can
be run over the Internet [25]. The Jeliot system allows users to relate the changes in the
state of the program animation to the lines of code it is running. Being online is a major
advantage, as it allows collaborative learning as well as easy access from many computers.
A disadvantage of the design is that it relies on the browser’s capabilities. Many applets
pop-up during use of this system, which can confuse the user. Also, there can be problems
with browser compatibility: a browser that is not Java-enabled will not be able to run the
system properly.

7

www.manaraa.com

Figure 2.3: Jeroo - The User Interface [3].

2.5.5 www.publicstaticvoidmain.com

Another online Java system is www.publicstaticvoidmain.com. Through a teacher ac-
count group, students are allowed to set up their own accounts, log into the system and
write and compile Java programs all online. www.publicstaticvoidmain.com is struc-
tured as a server application and works by means of client Java applets. One of the main
advantages of this system is that the user does not need to have a Java Runtime system in-
stalled on their machine to compile and run any code. All code processing is done on the
server side. One of the weaknesses of this system is that it is commercial and you must be
part of a group that is lead by a teacher to get an account. Another disadvantage is that
it does not incorporate any form of visualisation to help explain the code. As was noted
with the other online systems explored, www.publicstaticvoidmain.com is not sup-
ported by all web browsers. This is due to its reliability on Java applets — in order to use
www.publicstaticvoidmain.com, the web browser must be Java-enabled so as to be
able to run the Java applets on the client side.

2.5.6 ELP

Lastly, a recently created online programming system for teaching Java is the Environment
for Learning to Program (ELP) [4]. ELP is a highly structured system that provides an inter-
active web-based environment for teaching programming to first year Information Technol-
ogy students, developed at Queensland University of Technology. It is strongly oriented to
university course delivery and assessment. Learners enter code via a web site as shown in
Figure 2.4, and the code is compiled on the server-side. However, the compiled code is then
transmitted to the client machine as a JAR file, where the user must have a Java Runtime
system to execute the code. This, and the restriction to one particular web browser, makes
ELP less accessible than we would like.

8

www.manaraa.com

Figure 2.4: ELP - Example ELP Exercise [4].

2.6 Summary

This chapter presented an overview of some of the difficulties found in teaching Computer
Science in CS1 courses. We discussed both the difficulties found within the context of teach-
ing the complex material that Computer Science consists of, as well as problems present
before the students even arrive at University. We examined online learning in terms of its
applicability in education of Computer Science. We also discussed the use of visualisations
to facilitate the understanding of some complicated OOP and general programming con-
cepts, as well as the obstacles found in providing these visualisations in traditional teaching
environments. All of this is then illustrated through a critical exposition of six existing learn-
ing objects that are designed to teach programming through the use of code visualisation
and/or ubiquitous access provided by online functionality. The main advantages found in
these systems due to critical design and implementation decisions will be further explored
in the following chapter.

9

www.manaraa.com

Chapter 3

Design

In Chapter 2, we discussed some of the approaches that can and have previously been em-
ployed in the design of educational programming tools. These approaches form the key
design elements in planning the architecture of a new educational programming environ-
ment. This chapter will examine relevant approaches to these design elements and the tech-
nologies available to leverage them. Below are detailed these approaches; the key design
elements in building a new educational programming tool:

• Web-based educational programming tools.
Section 2.3 identified the benefits of using Internet applications as opposed to stand-
alone applications as the basis for educational tools. In this chapter, we will explore
the different web technologies available to support online learning tools, finding in
particular those that provide the best advantage:disadvantage ratio whilst keeping
the client side lightweight.

• Visualisations in educational programming tools.
Section 2.4 explained the application and advantages of using visualisations in teach-
ing. Here we will discuss the benefits and weaknesses of different visualisation tech-
nologies employed to support this approach. This requires a survey of different pro-
gram monitoring techniques as well as a look at different image technologies that can
be used to deploy effective images on the web.

3.1 Web Technology

Traditionally, the Internet is geared towards supporting static HTML that contains plain
text and static images. More value can be added to the Internet ‘experience’ in various
ways. One way is to create dynamic HTML that allows users to enter and retrieve relevant
information. This is done through web programming using languages such as Java Applets,
JavaScript, JavaServer Pages [5], or other scripting languages such as ASP, PHP or Flash
animations. Use of such technologies lead to sophisticated and dynamic websites that can
be much more interesting and interactive than standard static HTML.

Running a dynamic website does, however, involve a fair amount of information pro-
cessing which can happen either on the client side and/or the server side. Processing infor-
mation on the client side often creates problems with compatibility and technical require-
ments on the client machine. Since an educational programming tool, if it is to be interactive,
may need to process a lot of information, then it may be convenient to process as much of
this information as possible on the server side. This will enable users on any client computer,
old or new, with as little processing power as is needed to support Internet connectivity and

10

www.manaraa.com

run a browser to be able to use the tool. Having a lightweight client side avoids many of
the problems regarding browser compatibility since much of the information is processed
on the server, bypassing the problems caused by different browsers processing the same
information slightly differently.

What follows is a discussion of three of the main technologies that are commonly em-
ployed to add value to websites. The advantages and disadvantages of using each of these
technologies are also considered.

3.1.1 Java Applets

Java applets are essentially Java programs, except they run through web browsers. Since
Sun designed Java to be an operating system independent language, Java programs can
be written and compiled on one machine and then be run on many other machines with-
out needing to be altered. This fact makes programs written in Java conducive to being
distributed over the Internet. In 1995, Sun released HotJava, a Java-enabled browser that
allowed Java programs to be run over the web. Since then, most (but not all) other browser
vendors have added Java support to their browsers so as to make them Java-enabled. What
makes browsers Java-enabled is the fact that they include a Java Virtual Machine (JVM). Web
programmers can write Java programs, compile them as they would normally, and then in-
clude the bytecode, as they would images, in their HTML pages using the <APPLET> tags.
The bytecode is downloaded from the server side and executed on the client’s machine,
using the JVM in the browser. This is possible since Java applications are platform and ma-
chine independent, so the program can be written and compiled on the server machine and
the resulting bytecode can be downloaded and executed on any other machine.

Java applets are very useful for adding a dynamic, interactive and multimedia edge to a
web page. They are dynamic in the sense that they are active programs essentially ‘running’
on the client’s machine, through their browser. By being dynamic, they can simulate chang-
ing parameters — such as motion of a pendulum. They are interactive because they are Java
programs, running at real time on the client’s machine, so they user can interact with it (if it
has been programmed to be interactive). This allows programs that rely on the user chang-
ing parameters in order create some form of understanding to be written. Applets can also
make extensive use of multimedia — graphics, animation and sound can all be included in
an applet. All of this makes Java applets an good choice for adding value to websites.

Unfortunately, there are disadvantages of using Java applets. Their main weakness is
that not all web browsers are Java-enabled. Some newer versions of browsers have Java
support built in to them, but others require Java plug-ins to be downloaded and installed.
Therefore, web-based systems that are built using Java applets are not completely platform
and machine independent. This reduces the overall group of potential users. Also, newer
versions of Java cause inconsistencies in Java applets. Applets written in an newer version
of Java, such as Java 1.2, may not work in a browser that is designed to support Java 1.0.
Changes in HTML Data Type Definitions (DTDs) also cause compatibility problems between
browsers. Another disadvantage of embedding Java applets into websites is that although
in general the size of applets is small, they do have to be completely downloaded onto the
client’s machine before they begin to run. This increases the amount of information that
users will be required to download when visiting a page that includes Java applets.

Overall, Java applets can add a tremendous amount of value to websites. They add an
ample amount of interactivity to websites, through dynamic simulations and different types
of multimedia. Unfortunately, due to browser compatibility problems as well as added
download size, Java applets can cause unwelcomed inconsistency to websites. Some of the
common applications of Java applets, such as dynamic simulations, can be made equally as

11

www.manaraa.com

effectively through the use of animated GIFs, a much simpler technology that will not cause
any browser compatibility problems.

3.1.2 JavaScript

When invented in 1995, the JavaScript language created by Netscape was better known as
LiveScript. The name was later changed to JavaScript in a joint effort by Netscape and Sun,
apparently due to the growing popularity of Java [26]. Although some of the syntax of
JavaScript is quite similar to that of Java, there is little in common between the two lan-
guages.

Originally, JavaScript was included in the Netscape Navigator (NN) 2.0 browser via an
interpreter that read and executed the JavaScript that was included in the HTML pages
it rendered. Since then, the language has become more and more popular and is now
supported by most popular browsers although different browsers implement JavaScript in
slightly different ways. Originally, JavaScript was mainly used for client side form valida-
tion — verifying and checking user input (such as date format) in web forms. Although this
validation can be done on the server side, the advantages of doing it on the client side is to
avoid sending invalid data to the server which may need to be sent back with an error, thus
reducing the amount of bandwidth used and server processing power. JavaScript is also
used to implement many sophisticated dynamic web interfaces.

Although effects implemented in JavaScript are much faster to download than some
other front-end technologies like Flash and Java applets, they still add to the amount of in-
formation (even if only by a small amount) that the user will have to download when they
visit a website. Users do not need to download a plugin before they can view JavaScript, as
they do with Flash for example. They are required, however, to have a browser that sup-
ports JavaScript installed on their machine. This causes browser compatibility problems.
Most modern browsers do support JavaScript, but different browsers implement and thus
process and display JavaScript slightly differently, so the results can be rather unexpected
and inconsistent depending on which browser the client chooses to use. Code that works
on Internet Explorer 4 might not work at all on Netscape 4, and differences may even be
found between different versions of the same browser. Some older browsers do not support
JavaScript at all. Browsers from different vendors allow scripting languages to access differ-
ent HTML elements and features of the browser, which can cause inconsistencies from the
client’s perspective when any script is included in websites. Another problem is related to
the different versions of JavaScript that have been released over the years. Although most
JavaScript is more or less still the same, some subtle but noticeable differences can be found
between different versions of JavaScript which can cause further inconsistencies.

Overall, the use of JavaScript can add significant value to web sites as it adds an elaborate
level of dynamic interaction, but all the compatibility issues involved in doing so can cause
serious inconsistency problems.

3.1.3 JSP and JavaBeans

JavaServer Pages (JSP) is a Java technology that is aimed at allowing web programmers to
dynamically generate HTML. JSP files are stored on web servers, and are essentially HTML
pages with Java code embedded in them between specially defined JSP tags. When a user
makes a request to a JSP page on the server side, the corresponding JSP file is compiled into
a Java file by a JSP web server such as “Tomcat”. This Java file is better known as a servlet.
Servlets are also kept on the server. Their function is to dynamically generate normal HTML
content, which can then be displayed to the user as normal static HTML. The effect of this is

12

www.manaraa.com

to create dynamic and personalized webpages [27] depending on the user’s actions, which
can be displayed to the user as a normal HTML page. Since all the processing involved in
creating these dynamic HTML pages is kept completely server side, it is invisible to the user
requesting the HTML page.

JSP is simple to write — it is normal Java code written in between JSP tags. In order
to keep a degree of separation between the Java code and the HTML in a web page, the
Java code can be written into JavaBeans. JavaBeans are reusable components written in Java
which form a natural extension to JSP [28]. Like JSP, they are also stored, compiled and run
on the server side. The code they contain is normal Java code that can be used to store state
as well as manipulate user inputted data. JavaBeans can also use other Java classes, making
them very powerful. The advantage of using JavaBeans is that only small amounts of JSP
need to be written into HTML pages. These snippets of JSP can then call larger and more
complex reusable methods written in JavaBeans to perform the required manipulation of
data. This separation of processing code and HTML makes dynamic websites easier and
quicker to create.

Since JSP is stored and processed completely on the server side, any request that a user
makes to a web page that contains JSP will be sent back to the server machine, processed
and sent back to the client. This may be slower than the JavaScript way of processing the
information directly on the client machine. Request speeds depend on the speed of the In-
ternet connection and processing power of the server, as opposed to relying heavily on the
client machine’s processing power. This means that clients can run online systems built
with JSP on any computer with a browser and Internet connectivity, regardless of their CPU
speed. This server side processing also avoids browser compatibility problems. Since the
only information being sent between the client and server machines are normal HTTP re-
quests and responses, the user only needs to have a browser, without any special plug-ins,
to display the requested page. Since JSP is based on Java, which is a platform independent
language, the server can also be run on any machine, regardless of which operating system
is being run. Other server side scripting languages such as ASP, on the other hand, locks the
developer into running their server on specific platforms, such as WindowsNT/2000.

One disadvantage of using JSP is that it does restrict the graphic design of sites as it does
not produce as visually gratifying results as using Flash or JavaScript would. However,
it’s ability to store state, connect to databases and manipulate data with defined reusable
components in normal Java code, all on the server side and without causing browser com-
patibility problems, makes JSP a very powerful tool for web-programming.

3.2 Visualisation Technology

In education, it is important to be able to explain code in more than one way. Graphically
visualising code is one attempt at doing this, producing traces of program code is another.
But in order to collect information about a program so that it can then be used to better
explain the code’s behaviour, we need some way of capturing the required information at
critical or interesting points during the execution of the program. This is commonly known
as ’program monitoring’. The task of program monitoring has been done in various ways in
the past. One approach commonly taken is known as the event-driven approach [29]. Another
approach to this task is to use Aspect-Oriented Programming. The advantages and disadvan-
tages of using these two different approaches are discussed below.

13

www.manaraa.com

3.2.1 Event-Driven Approach

The crux of this approach is the concept of annotating the target program. What this means
is that in order to capture information about the program, the programmer must first decide
which events are of enough importance that they deserve to be monitored, and then alter or
insert code before, after or into those events that will output statements containing the infor-
mation being sought out. This output can take any form — it can be purely textual or visual
or even a mixture, depending on the nature of the program being monitored and the pur-
pose of the monitoring. The programmer simply needs to include code that will create the
type of output they wish to display. Commonly, simple calls to System.out.println(x)
are made, outputting some interesting information x in a textual manner.

An advantage of this technique of program monitoring is that it is simple and easy to
collect and display any sort of information needed. A rather large disadvantage, however,
is that it is an intrusive technique. It requires altering the target program. Not only may this
be inconvenient, but it may also not be allowed in certain cases where the user is not permit-
ted to change the target code. Directly modifying the target program may also obscure the
semantic meaning of the program and may introduce bugs that did not exist beforehand.
Also, this technique implies that there is no degree of separation between the output state-
ments and the program code. So if the output format is modified, all the output statements
must be changed everywhere in the target program. This can be a tedious task to perform
if there are many events which have been marked as being worthwhile monitoring. One
way to avoid this problem is to define visualisation ’events’ outside of the program code
and inserting ’event markers’ in the target program, rather than inserting output statements
directly. This way, when an event marker is reached, it makes a call to a method which runs
some form of output code, outside of the target program’s scope. This is similar to keeping
a ‘log’ class with log entries made everytime an interesting event occurs. This technique
introduces a degree of separation — if a modification is made to the format of the output, it
only needs to be made in one place. This reduces the need to keep making alterations in the
target program. But this method is still intrusive as the target program will still need to be
modified to include the event markers.

3.2.2 Aspect-Oriented Programming Approach

AOP is a relatively new paradigm designed to address programming problems that can-
not be cleanly encapsulated as separate components. Some systems are difficult to build
using the traditional style of modularity [30]. Examples of this include debugging, error-
handling or system logging across entire systems that utilize several classes. These types of
tasks can be described as “cross-cutting concerns” [29] or aspects of a system. Aspects of sys-
tems such as these cut across one another as well as the final executable code, that is, other
programming concerns. This type of problematic scenario has lead to the development of a
new programming paradigm, appropriately named ’Aspect-Oriented Programming’ (AOP).
AOP determines that any programming concern that cuts across other programming con-
cerns, (i.e. cannot be cleanly encapsulated into a separate component) should be declared
as an aspect. Using AOP, programmers have the power to break down large problems not
in an object-oriented manner, but rather using aspectual decomposition. Cross-cutting prob-
lems such as debugging or system logging which require large mechanisms for gathering
information can be facilitated by using AOP.

In AOP, rather than writing classes, programmers write aspects. Aspects are written in
an AOP language (such as AspectJ). Aspects define which classes to monitor as well as what
information they should capture. In order to specify what information to capture, aspect
developers must use join points. Join points tell the aspect to do ‘something’ (such as collect

14

www.manaraa.com

program information and manipulate it) at a specific point in the target program execution.
The original AOP definition of join points is: “... those elements of the component language
semantics that the aspect programs coordinate with” and “...clear, but perhaps implicit, el-
ements of the component program semantics” [29]. Using join points, the developers catch
the information they require about any classes in the target program, and manipulate it
accordingly. This is how AOP addresses the problem of cross-cutting concerns.

Program code visualisation is a cross-cutting concern [31]. This is due to the nature of the
information that is required to create the visualisations. Depending on the type of visualisa-
tion, information from various classes in the target program may need to be collected. Since
AOP is a good way of collecting information about a running program, particularly the type
of information we would normally be interested in visualising, it follows that it may be a
good way of collecting information for program code visualisations. One main advantage
of using AOP to collect information for program visualisation is it’s ability to monitor pro-
grams without being intrusive. This means that unlike the event-driven approach described
above, neither the target program nor the source of the classes being used need to be altered
in any way — no extra code needs to be added to them at all. This is a big advantage as
the program monitoring is done in the background, without any alterations needing to be
made or visible to the user. Intrusiveness is a common problem amongst other methods of
program monitoring [29].

3.2.3 AspectJ

AspectJ is an AOP extension to the Java programming language [6]. Using AspectJ, which
is essentially Java code, ‘aspects’ are written. AspectJ can be used to monitor many dif-
ferent kinds of ‘interesting’ landmark events, including method calls, method executions,
object instantiations, constructor executions, and field references. In AspectJ, these events
are known as the ’join points of Java’ [6]. AspectJ allows the programmer to monitor these
join points quite simply with the use of pointcuts. The way in which these events occur and
what sort of information the programmer expects to get back determine how they should be
captured. This is done with the use of designators. There are many different designators. The
execution designator is used when information about when a particular method body executes is
needed, whereas the call designator is used when information about when a method is called
is required. Method or constructor names, together with wildcards and logical operators,
are used to tell these designators which methods to monitor. Once some pointcuts have
been defined, the programmer must write advices for them as pointcuts don’t actually do
anything other than pick out join points. Advices are Java code that gets executed at the join
points that have been picked out by a pointcut. It is in these advices that the programmer
can write code to manipulate and format the captured information in whatever way they
wish to output it.

One of the main uses of AspectJ is to collect, format and display trace information about
a running program for debugging purposes. The reason for this is that by using aspects, the
programmer can essentially ’tap’ into the state of the running program and collect any data
they think may be useful. Java code allows the programmer to manipulate and format this
data into textual or graphical output using the Graphics2D Java API for example, depending
on the nature of the debugging data being displayed or the target audience.

In order to trigger the pointcuts when calls are made to methods in the classes, all the files
defining the classes, programs and aspects must be compiled together. This is done using
the AspectJ compiler (AJC). AJC weaves the aspect code into the classes, so that the resulting
bytecode contains the relevant aspect code. This way, when a program (which has also been
compiled using AJC) that utilizes these classes is run, calls to methods in the classes cause

15

www.manaraa.com

not only the normal effect of the classes, but also the aspect code to be triggered.

3.2.4 Image Technology

The use of images in websites is widespread. They add colour, catch peoples attention and
often convey a lot of information in a relatively small amount of space. Normally, images
on websites are static. They are stored in a file somewhere on the server side and the user
is shown the same file everytime they visit the website. Significant value can be added to
websites if images are dynamically generated depending on user actions.

Images can be regenerated depending on user actions quite simply: when a user sub-
mits data, the server performs the appropriate processing using Java code together with a
GIF generator to create the image ‘on-the-fly’. Users can then be shown different and more
appropriate images that reflect their actions. This is the core idea behind program code vi-
sualisations — the visual depictions are designed to highlight and reflect relevant changes
in the state of the user’s program code. Two main technologies available to do deliver dy-
namically created images are discussed below.

Write Generated Image to File

Once an image has been dynamically re-created using Java and a GIF generator, it can be
written to a file on the server machine. The website can then refresh, displaying the new
image. This method can potentially cause problems if the image file being overwritten is
already open elsewhere. Some browsers insist on caching images and so this method can
also fail if the browser simply redisplays old cached files.

Use a Java Servlet to Serve Image

Another way to deliver dynamically re-created images on the web is by using a Java servlet.
The image is still dynamically generated depending on user actions using Java code and a
GIF generator, but this time rather than being written to a file, it is written directly to the
HTTP response using a servlet. This avoids having to create files on the server and can avoid
browser caching problems as well.

3.3 Conclusion

This chapter has examined the different technologies available to support the approaches
that address the key design elements of building a new educational programming tool.
The technology we have found to best support lightweight client side online systems is
JavaServer Pages. We found that aspect oriented programming through AspectJ would be
the best technology to support program code visualisations. To deliver these visualisations,
we chose to use a Java servlet to avoid browser caching problems. Together, using these
technologies we have built a web-based programming environment that makes extensive
use of program code visualisations. This system is described in detail in the following chap-
ter.

16

www.manaraa.com

Chapter 4

JavanOwl

4.1 Goals

Many problems associated with education in Computer Science we have identified. Of
these, the following have been identified as some solutions that may help the overall current
situation:

• Provide an accessible opportunity for learners to familiarize themselves with program-
ming before the start of a CS1 course.

• Provide a safe and clear environment in which CS1 students can practice and expe-
rience first-hand some of the concepts and programming techniques they are being
taught at their course.

• Reduce the need for learners to buy or install new software, hardware or textbooks.

• Eventually add to the combined effort of reducing the large gap between the number
of females and males in Computer Science.

4.2 JavanOwl

JavanOwl is a programming environment designed to help beginners learn how to program.
It is web-based and provides a cheaper and ubiquitous alternative to traditional applica-
tions. JavanOwl works on all web browsers dating back to early versions, and does not
require any applets or plugins. The JavanOwl system aims to be a collaborative learning
environment, based on a cognitive and constructivist pedagogical strategy, where immedi-
ate feedback is provided, and learning from errors is encouraged. Learners will be able to
use it from any computer, no matter how old and cheap, with minimal Internet connectivity.
This reduces the need for resources such as expensive computers, software, textbooks and
teacher time.

JavanOwl allows users to create, edit, save, and retrieve programs, and to run both pro-
grams written by users, and example programs provided in the system. Usage is simple
and straightforward, with a split-screen web page showing both the code and the output.
The user enters their code through a simple form and then runs it. If the code is error-free,
the browser will be display the result in the output pane. If the code has errors, the output
pane will display a simple specific error message. Users can then edit their code and re-run
it. The system interaction is thus based on a principle of immediate feedback with visibility
of cause and effect.

17

www.manaraa.com

Figure 4.1: JavanOwl in Use

Users can write simple stand-alone Java code entered in a single form. This is powerful
enough to allow learners to work with library objects and their methods, and to use se-
quences of statements, iteration and selection, as shown generating the output in Figure 4.1.
Users can also write programs that output textual output. The system is powerful enough to
allow users to write their own classes and use them in programs they write. This gears the
learning towards an OO-first approach. JavanOwl includes both textual and graphical out-
put, which is supported by dynamic image generation over the web. The dynamic image
is an important idea in our approach, and has been developed in our other web technol-
ogy work [32]. Library objects with graphical output constitute our primary approach to
run-time visualisation, as shown in the figures. This approach is both simple and motiva-
tional. Aspect Oriented Programming has been used to provide the run-time visualisations.
This approach may be extended to provide more or less detailed visualisations of showing
different views of the program code, such as traces.

18

www.manaraa.com

4.3 JavanOwl Usage: A Demonstrative Scenario

If used as a teaching aid, JavanOwl will give lecturers and tutors of introductory Computer
Science courses more time to focus on the more abstract side of Computer Science, allowing
them to leave some of the more practical programming exercises for the students to practice
independently. By providing a clear environment, this system can be used as a learning
playground by anybody who wishes to practice and reinforce what they learn in class.

Alternatively, if introduced to students at earlier levels, such as secondary school, Ja-
vanOwl will provide an opportunity for learners to familiarize themselves with basic pro-
gramming concepts before the start of a Computer Science course, giving them a higher
chance of succeeding in their course. Picture the following scenario:

Student X attends a local public high school. She wishes to learn how to program in Java, but
is told by her teacher that programming is not taught at their school. Student X is advised
to:

• buy herself a relevant textbook, download or buy all the relevant software and install
it on a PC either at home or at school, and begin working on it herself. Student X
finds that textbooks are very expensive and that she cannot possibly afford one. The
PC she has at home is not ‘hers’, so she cannot install software on it, and she is afraid
of doing something wrong on the ones at school. She feels lost and confused. With-
out some teacher aid, she doesn’t know where to begin the rather long and arduous
task of learning how to program. Student X decides to wait until she can attend an
introductory Computer Science course at a tertiary education institution.

Eventually, Student X enrols in a CS1 course. Finally she is going to learn how to
program. Within the first couple of weeks of the course, she is expected to learn a
large myriad of information regarding object oriented programming, data structures,
algorithms and other programming concepts. She has already been asked to write her
own Java program as part of the first assignment. She is overwhelmed and very lost.
Student X feels that no matter how hard she tries, everyone else in the course seems
to already know more than her. At last, Student X decides that there is no point in
continuing to try, she simply cannot absorb this much information. Her self-confidence
with computers decreases drastically and she arrives at the inevitable conclusion that
she is no good with computers. Student X decides that she was not meant to be a
programmer and quits the course.

• try using JavanOwl. Student X accesses the JavanOwl application online from the
school computer during her lunch break, begins by looking at some sample code in
the Help section. Student X realises she is able to access JavanOwl from any computer,
and so spends some time at Internet cafes playing with code. Soon, student X finds the
courage to try writing some code of her own, experimenting with different program-
ming constructs and techniques. She uses the visualisation tool to help her grasp how
the code works and if she has any questions, she posts a message to the web-forum
and waits for a reply from a tutor or a fellow student. Student X writes some fun
programs using the JavanOwl library and passes her program’s URL onto friends for
them to try running. Student X has now successfully gained the experience with pro-
gramming that will increase her chances of succeeding at an introductory Computer
Science course.

This is a vision of how JavanOwl will help education in Computer Science.

19

www.manaraa.com

4.4 Why Java?

JavanOwl introduces Java at a basic level, helping portray some of the important Object-
Oriented paradigms that students must learn. The motivation behind choosing Java as the
language to teach is threefold:

• Many universities around the world use Java as the first language they teach as part
of their introductory Computer Science courses. JavanOwl would therefore directly
benefit students entering these courses.

• Java is a real language, it exists in the real business world, so it will be useful for
students of all ages, providing practical motivation.

• Java is used for web programming, so the web context of JavanOwl is based on a real
and useful application delivery domain.

4.5 Educational Practices Embedded in JavanOwl

JavanOwl supports both scaffolding and collaborative learning, practices that have become
increasingly more popular following the move towards a more constructivist, generative
approach regarding education [33]. Scaffolding plays a very important role in the success of
computer-based learning environments as they motivate the learner, reduce task complex-
ity, provide structure and reduce learner frustration [34]. JavanOwl takes this approach by
the dramatic simplification of the programming environment, immediate feedback on the
same page, and the use of pedagogical library objects with graphical output. JavanOwl also
includes its own library, with tutorials and documention using conventional web technol-
ogy. The system also supports collaboration, and provides a web discussion forum built-in
so as to provide users with a support system that will allow a collaborative community of
peer support and file sharing to arise.

4.6 A Breakdown of The JavanOwl Application

JavanOwl is designed as a complete web-based system. This means that within the Ja-
vanOwl application, there are various different sections that allow users to perform dif-
ferent functions. This section gives an in depth description of each of the different actions
that users can perform through JavanOwl.

20

www.manaraa.com

4.6.1 Before entering the system

The home page is a simple title page for JavanOwl that briefly explains what it is for and
where to find more information. From here, users can register to use the system or log into
the system using their username and password. Figure 4.2 shows the JavanOwl homepage.

Figure 4.2: JavanOwl Homepage

Users are required to register with the system in order to be able to use it. This is neces-
sary because JavanOwl allows users to create and save program files. Whenever users log
in to the system, all the files they have previously created and saved are available for them
to keep working on. JavanOwl provides an online storage and running facility for simple
Java programs that the users write.

21

www.manaraa.com

4.6.2 Writing and Saving a Program

JavanOwl allows users to create, edit, save, and retrieve Java programs. The interface for
this is a simple and straightforward single-screen development area. The development area
is split in two — a panel on the left hand side that contains a web form into which users can
write code and a panel on the right hand side that displays the output of running their code
(as shown in Figure 4.3). Users enter their program code into the web form and save it as a
‘program’. By writing programs and saving them with different names, users can build up
a repository of Java programs.

Figure 4.3: User enters code into the web form and saves it with a filename.

JavanOwl allows users to write simple Java code, that is, sequences of statements such as
object creation and method calls, iteration and selection. A library of classes has been written
and is provided with the system. This allows users to write programs that create objects, and

22

www.manaraa.com

then be able to run the available methods on the objects created such as the code shown in
Figure 4.4. The JavanOwl API is given in the normal JavaDoc format through a link in the
system. They can view the API to find which classes and methods are available for them to
play with.

Person bob = new Person();
bob.hasHat();
bob.setHatColour(green);

House bobsHouse = new House();
bobsHouse.hasChimney();
bob.setChimneyColour(blue);

Figure 4.4: Example of code that uses library objects, written in JavanOwl

Aside from using the JavanOwl API, users can write programs that output plain text.
Again, these programs may contain simple Java code such as sequences of statements, it-
eration and selection. Figure 4.5 shows an example of the type of program that users can
write that outputs text only. For security reasons, users are not permitted to execute code
that accesses any of the system resources. This is explained in more detail in Section 5.2.1.

output.println("Hello World!");
output.println("");

for (int i = 1; i < 10; i++) {
if ((i%2) == 0) {

output.println(i + " is an even number");
}

else {
output.println(i + " is an odd number");

}
}

Figure 4.5: Example of code that outputs text, written in JavanOwl

Users can also write and use their own classes that output text. This is covered in more
depth in Section 4.6.5.

23

www.manaraa.com

4.6.3 Running a Program

Once the user has written or opened an existing program, they can run it. Provided the
code is error-free, the browser will display the result in the output pane. In this way, system
interaction is based on a principle of immediate feedback with visibility of cause and effect.
The type of output shown in the output pane depends on the type of the program they are
running. If the user code uses any of the JavanOwl API classes that outputs visualisations,
then an animated visualisation of the program code will appear in the output pane. If the
user code outputs text only, then the output text will be shown in the output pane. Figure 4.6
shows the state of the JavanOwl system after a program that utilizes the JavanOwl API and
produces a visualisation of the program code has been run. Figure 4.7 shows the state of
JavanOwl after a textual program has been run.

Figure 4.6: JavanOwl system after having run a program that outputs program code visual-
isations

24

www.manaraa.com

Figure 4.7: JavanOwl system after having run a textual program

4.6.4 Errors in user code

JavanOwl will catch some errors in user code. In particular, syntactic errors that are nor-
mally picked up by a compiler are easily dealt with. If a user attempts to run code that has
multiple syntactic errors in it, JavanOwl will find the very first error (parsing top-down) and
the output pane will display a simple and specific message regarding the error as is shown
in Figure 4.8. Runtime exceptions are also caught by JavanOwl and produce a similar error
message. This form of debugging is simple but effective.

Infinite loops in code that use visualisations of JavanOwl APIs can also be caught. In
the case of infinite loops, an upper limit has been set on the number of animation frames
that can be created in generating the visualisations of program code. If the limit is reached,

25

www.manaraa.com

then the visualisation fails and an error message is given to the user advising them of their
mistake. In both cases, once the users have been shown their error, they can find it in their
code, edit it and re-run it.

Figure 4.8: Running user code that contains a syntactic error

4.6.5 Writing, Saving and Using a Class

JavanOwl also allows users to create, edit, save, retrieve and use their own Java classes in
the programs they write and run. Within their classes, users are able to write both void
methods and methods that return a value. The structure of classes written for JavanOwl
is the same as the structure of normal Java classes. Methods are defined as they normally
are in Java classes. Although the filenames given to their classes is immaterial since they
are simply used to store the classes in their account, the actual class names in the code are

26

www.manaraa.com

public class Hello {

public void printHelloOnce() {
output.println("Hello!");

}

public void printHelloManyTimes(int count) {
for (int i = 0; i < count; i++){

output.print("Hello ");
output.print(i);
output.print(" times");
output.println("");

}
}

public String returnsHello() {
return "hello";

}
}

Figure 4.9: Example class written in JavanOwl

important. The class name will need to be used to instantiate objects of that class, so no
two classes should have the same name. This is the same behaviour that is encountered in
normal Java programming. Figure 4.9 shows a class that could have been written and used
in JavanOwl.

The same split-screen development area that is used to write and run programs is used
to write classes. Users enter their class code into the same web form that they write program
code in. When they save their code, it must be saved as a ‘class’. The class is then saved into
their account. Users can write programs that use classes they have written by instantiating
an object of that class in their code. In order to run a program that does this, users must
first select the classes they have used in their program, essentially importing the required
classes into their program code. A list of all classes the user has written is displayed next to
the ‘Run Code’ button so that they are able to select all the necessary classes before running
their code. Then, provided both the program and the class are error-free and that they have
selected all the necessary classes to import, the program will run and the output will be
shown in the output pane.

The effect of allowing users to write their own classes is to gear the learning towards an
OO-first approach. It is, however, kept optional — users can choose to not write any classes;
they are never forced to write their own classes. This functionality was included as a proof-
of-concept as well as to cater for those who feel comfortable enough with programming and
wish to extend the system by writing and using their own classes.

4.6.6 Studying Data Structures

JavanOwl provides a section for users to study the data structures that are commonly used
in programming, such as Stacks, Queues and Arrays. Theoretically, data structures can be
hard for students to understand. Often the best way to explain how data structures work is
by drawing pictures of the state of the structure before and after calls to methods that store
or remove elements from it, thus visually depicting the effect of these methods. This section
of JavanOwl provides a place where students can explore the behaviour of a particular data
structure. Users can write and run code that uses a data structure, the result of which will
be an animated visualisations of their code.

27

www.manaraa.com

The layout of this section of JavanOwl is very similar to that of the section where users
write and run normal programs. The interface is simple: a single-screen development area
that is split into two columns. A panel on the left hand side displays the description of a
data structure that the user has selected from a drop down list. It also contains a web form
into which users can write code. The panel on the right hand side displays the output of
running their code. Figure 4.10 shows an example of what is displayed to the user.

Figure 4.10: JavanOwl system after having run a data structure program

Users select a data structure they wish to study from a drop down list. This displays a
description of the selected data structure as well as a list of methods that are applicable to

28

www.manaraa.com

that data structure. A small skeleton program also appears in the code text box, which the
user can run. The user can also edit the code provided and run it. The output of running
their program, provided it is error-free, is an animated visualisation of the program. This
provides the user with a graphical representation of their program. The animations have
been created to clearly reflect the effect caused by a method call. For example, Figure 4.13
was generated from the code shown in Figure 4.11.

MyStack stack = new MyStack();
stack.push("1");
stack.push("2");
stack.pop();
stack.push("3");

Figure 4.11: Example of code that uses the Stack class, written in JavanOwl

29

www.manaraa.com

4.6.7 Managing Your Files

The user is given the ability to manage their files. By means of a separate section in the
system, users can view the code and delete programs and classes they have created. This
section was added for convenience as well as providing the user with a sense of freedom
within the system.

Displaying code simply displays the code on the screen. Deleting code completely
deletes the selected program or class from the user’s account. The user is given a chance
to exit the procedure of deleting a program. Figure 4.12 shows a user attempting to delete a
program.

Figure 4.12: User attempting to delete one of their programs.

4.6.8 User Forum

The system supports collaboration by providing a built-in web discussion forum so as to
give users a support system that will allow a collaborative community of peer support and
file sharing to arise.

4.7 Program Code Visualisations

One main concern was to provide users with immediate feedback — allowing them to get
instant satisfaction from the code they write. One approach to this was to compile and

30

www.manaraa.com

run user code ’on-the-fly’. Another approach we took was to provide program code visu-
alisations also generated ‘on-the-fly’ that help explain the effects of the code that the user
is writing. Together, these two approaches have created a system where the interaction is
based on a principle of immediate feedback with visibility of cause and effect. When users
submit some code, they immediately receive feedback in the form of a graphical represen-
tation of that code. This graphical feedback emphasizes the actions the user chose to run in
their program, highlighting the effects of different programming structures.

Figure 4.13: JavanOwl animation of a user-written program that uses the Stack class.

JavanOwl creates animated program code visualisations of user code. Each important
event in the user’s program execution, such as a method call or a constructor execution,
draws a picture of the state of the program after the event has occurred. Each one of these
images becomes a frame in an animated sequence of images that shows the progression of
the program execution. The effect of this is to show the user, in a simple graphical manner,
how the user program code develops — how each method call or constructor execution

31

www.manaraa.com

affects the state of the program. Figure 4.13 shows the sequence of frames that would make
up the animated visualisation that would be generated from some Stack code. It shows in
some detail the effect of different methods in the Stack class.

4.8 JavanOwl Library and API

JavanOwl includes its own library of classes. This allows learners to work with library ob-
jects and their methods, through the use of sequences of statements, iteration and selection.
The result of executing programs that use the JavanOwl library are program code visualisa-
tions.

4.8.1 Classes

So far, the classes provided in the JavanOwl library are the following:

Simple classes provided for interesting exercises:

• Person class. This class creates a stick person object. It provides methods to add a
hat to the stick person, raise its arms, lower its arms and change the colour of various
parts of it’s body.

• House class. This class creates a house object. It provides methods to add a chimney
to the house and change the color of various parts of the house.

Classes provided to help explain data structures:

• MyStack class. This class creates a stack object. It provides methods to push, pop and
peek strings in to and out of the stack object. This class is intended to be used with
run-time visualisation to help learners understand stacks.

4.8.2 JavaDocs and Related Documentation

Standard JavaDocs were created and have been provided for all the classes provided within
the JavanOwl library. This is intended to not only give user a reference point for available
methods on classes and the respective signatures, but also to familiarize users with the nor-
mal JavaDoc format.

32

www.manaraa.com

Chapter 5

Implementation

5.1 System Architecture

JavanOwl has been implemented using JavaServer Pages (JSP) [5], along with JavaBeans,
JDBC, an SQL database, and HTML, all run on the server-side, using the JavaServer Pages
“Tomcat” web server; software for which is all freely available. JavanOwl has been designed
to be as portable as possible, as Tomcat runs on a wide variety of systems. The web browser
clients can be very lightweight and require no plug-ins, and avoids browser compatibility
problems. The architecture is therefore easy to provide on both server and

client sides.

School

User
data
DB

Internet

Server -
running JavanOwl

code

us
er

 c
od

e
sa

ve
d

user submits
code

code output /
error message code output /

error
message

us
er

 c
od

e

re
tri

ev
ed

code
compiled
and run

Home

Internet Cafe

Figure 5.1: JavanOwl system architecture.

5.2 Compile and Run Technology

The system allows users to write simple Java code, including standard object creation and
manipulation using the library of classes provided, sequences of basic statements, iteration
and selection. The system allows users to write their own classes and use them in programs
they write as well. Users enter their code via a web form, which is stored in the database.
They don’t have to explicitly compile their code, they simply ‘run’ it. When they run their
code, the session bean retrieves their code from the database and writes it into a .JSP file,

33

www.manaraa.com

already wrapped with appropriate wrapper code. In order to catch compile errors, the JSP
file is pre-compiled on the server side using a Java Runtime process to run a pre-defined Ant
Task, and any errors that are caught are parsed and then output to the user. If the user code
is error-free, ‘Tomcat’s Jasper Engine then converts the JSP file into a corresponding .Java
file. This file is then compiled by ‘javac’, the Java Compiler, further converting it into its
corresponding .Class file. The user’s code has therefore essentially been turned into a valid
Java Servlet. This servlet is executed on the server and the user’s browser is then redirected
to a page where the result of running the Java Servlet is displayed.

This method of compiling and running user code has been successful thus far. It has
several advantages:

• It does not require large amounts of (possibly non-terminating) Java Runtime pro-
cesses to be initiated — our first attempt at compiling and running Java programs for
this system included creating Java Runtime processes from the session bean, and exe-
cuting the appropriate commands to compile and run the code. This method did not
work as well as we had hoped. Our experience showed that even with only a few con-
current users, the system would overload the server’s processor with rogue threads
that would eventually crash the system.

• It uses the web server’s own technology to compile and run simple Java code. This
means that no new applications specifically designed to compile and run Java over
the web are needed.

• It allows users to write very simplified Java code — without the usual ‘public static
void main (String[] args)’ at the beginning. This gives users a chance to get some
code working very quickly (just one line is sufficient), without needing to learn all the
syntax involved in writing a complete stand alone Java program.

• It is flexible enough to allow users to write their own classes and use them in their
code. Since JSP allows embedded classes to be written within .JSP files, it was a simple
enough extension to include user-written classes in the .JSP file written together with
the wrapper code. The ‘Tomcat’ webserver handles the rest.

5.2.1 Security

Some consideration was given to security issues even though the topic is out of the scope
of this project. Since JavanOwl allows users to write and execute code by executing their
code on the server, the implications of this are quite serious. The user could in theory use
JavanOwl to execute code that accesses the servers system resources or writes to the disk.
Used in a malicious manner, this could cause the server to shutdown, crash or worse, lose
all it’s data.

However, the “Tomcat” web server that we are using to host JavanOwl has its own im-
plementation of Java’s Security Manager [35]. The developer must first define the permis-
sions that a class loaded by Tomcat should have by editting the default catalina.policy
policy file. The effect of this is to disallow any web applications to access the servers sys-
tem resources. Once this is done, the Tomcat web server should be started with a special
command $CATALINA HOME/bin/catalina.sh start -security to tell it to run in
secure mode — that is, apply the permissions set in the catalina.policy file. By setting
the correct permissions, security should not be a concern in JavanOwl.

34

www.manaraa.com

5.2.2 Code Samples

Below are some code samples of how the user’s code gets transformed into valid JSP that
the “Tomcat” web server can convert into Java files or servlets, together with explanations
of why the respective JSP was added.

Transforming Code That Uses the JavanOwl Library

Figure 5.2 shows some user-written code that makes use of JavanOwl library objects such
as Person and House objects, together with the respective JSP version of the same code. The
JSP wrapper code begins by importing a few necessary classes. The JSP wrapper code also
defines a few variables in order to simplify the code that users have to write as much as
possible. For example, when JavanOwl transforms code that contains Person or House ob-
jects, it defines variables of type Color and gives them names corresponding to the colour
they represent. This is so that JavanOwl users can just type the word ’green’ when call-
ing methods that require a colour to be specified, rather than needing to specify the object
’Color.green’ which would be perhaps too advanced for novice programmers. Therefore,
when the JSP file is converted into a servlet and executed, the colours which the user speci-
fied as arguments in their methods are actually variable names that refer to real Java Colour
objects. At the end of the file, it creates the visualisation of the program code by calling on
the Image class which was specifically written to write the visualisations out to animated
GIFs.

35

www.manaraa.com

Person jerome = new Person(150,"jerome",20);
jerome.hasHat();
jerome.raiseArm(left);
jerome.raiseArm(right);

jerome.setHatColour(red);
jerome.setBodyColour(green);
jerome.setHatColour(orange);

House yours = new House();
yours.setRoofColour(blue);

<html>
<%@ page import="mcs.javanowl.*"%>
<%@ page import="sciexp.*"%>
<%@ page import="java.awt.Color"%>
<%@ page import="java.util.*"%>
<%@ page import="java.io.*"%>
<%@ page import="sciexp.proxy.Person"%>
<%@ page import="sciexp.proxy.House"%>
<jsp:useBean id="Mgmt" class="mcs.javanowl.SQLmgmt" scope="session" />
<%
 Color blue = Color.blue;
 Color cyan = Color.cyan;
 Color yellow = Color.yellow;
 Color black = Color.black;
 Color white = Color.white;
 Color red = Color.red;
 Color pink = Color.pink;
 Color green = Color.green;
 Color gray = Color.gray;
 Color orange = Color.orange;
 String right = "right";
 String left = "left";

 Person jerome = new Person(150,"jerome",20);
 jerome.hasHat();
 jerome.raiseArm(left);
 jerome.raiseArm(right);

 jerome.setHatColour(red);
 jerome.setBodyColour(green);
 jerome.setHatColour(orange);

 House yours = new House();
 yours.setRoofColour(blue);

 Image image = new Image();
 Mgmt.setLastImage(image);

%>
<jsp:forward page="/output.jsp"/>
</html>

Figure 5.2: Transformation of user code that uses Person and House classes into JSP

36

www.manaraa.com

Figure 5.3 shows some user-written code that makes use of the Stack objects, together
with the respective JSP version of the same code. Like the JSP wrapper code used to trans-
form user code that utilizes other JavanOwl library objects, the JSP wrapper code in this
case must first import a few necessary classes at the beginning of the file. It must also create
the visualisation of the program code at the end by calling on the Image class. However, no
extra variables need to be defined in the JSP wrapper code to simplify user code in this case
as there is nothing to simplify.

MyStack stack = new MyStack();
stack.push("1");
stack.push("2");
stack.pop();
stack.push("3");
stack.peek();

<html>
<%@ page import="mcs.javanowl.*"%>
<%@ page import="sciexp.*"%>
<%@ page import="java.awt.Color"%>
<%@ page import="java.util.*"%>
<%@ page import="java.io.*"%>
<%@ page import="sciexp.proxy.MyStack"%>
<jsp:useBean id="Mgmt" class="mcs.javanowl.SQLmgmt" scope="session" />
<%
 MyStack stack = new MyStack();
 stack.push("1");
 stack.push("2");
 stack.pop();
 stack.push("3");
 stack.peek();

 Image image = new Image();
 Mgmt.setLastImage(image);

%>
<jsp:forward page="/examples_output.jsp"/>
</html>

Figure 5.3: Transformation of user code that uses Stack class into JSP

37

www.manaraa.com

Transforming Code That Outputs Text and Uses User-Defined Classes

Figure 5.4 shows some user-written code that outputs text, together with the respective JSP
version of the same code. Figure 5.5 on the other hand shows some user-written code that
uses a user-written class, together with the respective JSP version of the same program code.
In both cases, the JSP wrapper code required for this type of user code first imports necessary
classes. If the user has defined any classes and is using them in their program code as in
Figure 5.5, then the whole class is also written into the file as an inner class.

output.println("Hello World!");
output.println("");

for (int i = 1; i < 10; i++) {
 if ((i%2) == 0) {
 output.println(i + " is an even
number");
 }

 else {
 output.println(i + " is an odd
number");
 }
}

<html>
<body bgcolor="#FFFFFF">
<%@ page import="java.io.*"%>
<pre>
<%
 setOut(out);

 output.println("Hello World!");
 output.println("");

 for (int i = 1; i < 10; i++) {
 if ((i%2) == 0) {
 output.println(i + " is an even number");
 }

 else {
 output.println(i + " is an odd number");
 }
 }

%>
</pre>
<%!
PrintWriter output = null;
void setOut(JspWriter out) { output = new PrintWriter(out); }
%>
</body>
</html>

Figure 5.4: Transformation of user code that outputs text into JSP

The most interesting feature about this wrapper code is that it declares a PrintWriter
field called output and sets it to null. It also declares a method that sets this PrintWriter
field equal to a PrintWriter created using JSP’s JSPWriter variable out, which is passed to
it as a argument. Before any of the user’s code gets executed, this method is called with
the default JSPWriter out object as it’s argument. The effect of this is to define the output

38

www.manaraa.com

variable that students can call to print messages to the output pane as a PrintWriter object
rather than using the default JSPWriter object. The reason for doing this is that many of the
methods defined for the JSPWriter objects throw IOExceptions. Without this JSP wrapper
code, if users attempts to write code such as out.println("hello") to print a string the
output pane using the default JSPWriter object out, then they would need to put it within
a try catch pair. Similarly, without this JSP wrapper code, if a user writes a method within
their own class that writes out to the output pane, then they would need to declare the
method to throw an IOException. The PrintWriter class has been created to provide the
same functionality as classes like the JSPWriter class, except without throwing IOExceptions.
Therefore, by wrapping the default JSPWriter object out in a PrintWriter object, the result is
an object that has the same functionality as out had, except it doesn’t throw IOExceptions.
This means that users can write simplified code — they do not need to worry about throwing
or catching exceptions. Learning about exceptions is out of the scope of JavanOwl.

39

www.manaraa.com

Hello hello = new Hello();

hello.printHelloOnce();
hello.printHelloManyTimes(5);
output.println(hello.returnsHello());

<html>
<body bgcolor="#FFFFFF">
<%@ page import="java.io.*"%>
<pre>
<%
 setOut(out);

 Hello hello = new Hello();

 hello.printHelloOnce();
 hello.printHelloManyTimes(5);
 output.println(hello.returnsHello());
%>
</pre>
<%!
PrintWriter output = null;
void setOut(JspWriter out) { output = new PrintWriter(out); }
%>
<%!
public class Hello {

 public void printHelloOnce(){
 output.println("Hello!");
 }

 void printHelloManyTimes(int count){
 for (int i = 0; i < count; i++){
 output.print("Hello ");
 output.print(i);
 output.print(" times");
 output.println("");
 }
 }

 String returnsHello() {
 return "hello";
 }
}
%>
</body>
</html>

public class Hello {

 public void printHelloOnce(){
 output.println("Hello!");
 }

 void printHelloManyTimes(int
count){
 for (int i = 0; i < count; i++){
 output.print("Hello ");
 output.print(i);
 output.print(" times");
 output.println("");
 }
 }

 String returnsHello() {
 return "hello";
 }
}

Figure 5.5: Transformation of user code that uses a user-defined class into JSP

40

www.manaraa.com

5.3 Server Side Storage

In order to increase accessibility JavanOwl has been made portable and client-lightweight
with as much processing as possible done on the server side. All the JSP files and JavaBeans
are stored on the server. All the user’s code is stored in a relational SQL database stored on
the server. All requests made to JSP pages are sent off to the processor, processed, and sent
back to the client as HTML.

The advantage of making the system as client-lightweight as possible is that no special
plug-ins are required on the client machine. The need for plug-ins can cause problems as
they are not necessarily always available for all browsers and platforms, nor is there al-
ways a standard between plug-ins for different platforms. Not using plug-ins avoids the
users needing to download special plug-ins for their browsers. JavanOwl users can use any
platform and any browser to use the system, increasing accessibility. On the other hand, a
disadvantage of this is that the speed of the system relies heavily on the speed of the inter-
net connection of the client’s machine and the processing power of the server machine. If
the server were to be held up by some other process the whole system may slow down or
possibly collapse.

5.4 AOP and AspectJ for Program Code Visualisation

AOP and AspectJ were specifically designed to address cross-cutting concerns. Therefore,
since program monitoring is considered to be a cross-cutting concern, AspectJ was used to
monitor the objects that the users created and manipulated in their code. The information
gathered this way was then used together with the Graphic2D class in Java’s API and a GIF
animator class to generate the visualisations of the user’s program code.

One aspect was written in AspectJ for JavanOwl. This aspect was used to monitor all im-
portant join points in the JavanOwl API, that is, constructor executions and calls to methods
of classes in the JavanOwl API. Therefore, pointcuts were defined to pick out each of these
join points. Figure 5.6 shows one such pointcut. This pointcut, called changePersonPC
was defined on methods that changed a Person object. With the use of wildcards and log-
ical operators, this pointcut captures calls to all methods defined for the Person class that
either begin with the word set, has or raiseArm. The pointcut uses the designator call to cap-
ture information about when the methods being monitored are called since that is all the
information we needed to collect for the purposes of the visualisations to be drawn. It also
captures the callee Person object.

pointcut changePersonPC(Person person):
((call(void Person.set*(..)) || call(void Person.has*(..)) ||
call(void Person.raiseArm(..))) && target(person));

Figure 5.6: An example pointcut defined for JavanOwl, written in AspectJ

Since pointcuts do not actually do anything, advices were written to contain code that
would be executed when a pointcut picked out a join point. Figure 5.7 shows an advice
written for the pointcut in Figure 5.6. It is scheduled to be triggered after the call to the
methods defined in the pointcut. This is done so that the visualisation is drawn the call to
a particular method is finished, just in case the target program does not execute properly.
The advice in Figure 5.7 first adds the callee Person object, data that was collected using the
pointcut, to a list of objects kept by the aspect. The advice then creates a new BufferedImage
— essentially a new empty frame of the animation. The advice iterates through the list of

41

www.manaraa.com

all objects that have been created or changed in the program so far, drawing each of them
into the new frame using the Graphics2D library. The result of this is a BufferedImage with
the current state of the program drawn in it. This BufferedImage is then added to a list of
BufferedImages kept by the aspect. The list of BufferedImage will be drawn at the end of
the program, creating visualisation which is shown to the user.

after(Person person): changePersonPC(person) {

getSoFar().add(person);
BufferedImage bi = new BufferedImage(400,400, BufferedImage.TYPE_INT_RGB);
Graphics2D g2d = (Graphics2D) bi.getGraphics();
g2d.setColor(Color.white);
g2d.fill(new Rectangle(0, 0, 400, 400));

for (Iterator iter = getSoFar().iterator(); iter.hasNext();){
Object o = (Object)iter.next();
Class c = o.getClass();
String s = c.getName();

if (s.equals("sciexp.Person")){
Person p = (Person) o;
p.makePerson(g2d);

}

else {
House h = (House) o;
h.makeHouse(g2d);

}
}

getBufferedImages().add(bi);
g2d.dispose();

}

Figure 5.7: An advice defined on the changePersonPC pointcut

Pointcuts and advices such as the ones described above were written to handle all calls
to methods and constructor executions in the users program code. Each advice created a
BufferedImage and drew into it the current state of the program during its execution. There-
fore, it follows that each method call or constructor execution caused a new BufferedImage
to be created. By the end of the target program execution, a list of BufferedImages is cre-
ated. This list of BufferedImages is then used to create the animations of the program code
since each BufferedImage represents a momentary state of the program. The effect of this
is to have one animation frame for each method call or constructor execution, resulting in
a graphical visualisation of the effects of the methods and constructors called upon by the
target program.

5.4.1 GIF Generation

When a user program has been run by the user and the aspect has created a corresponding
list of BufferedImages that shows each individual state of the program during its execu-
tion, an animated GIF is generated. JavanOwl uses a GIF animator encoder package called
to.mumble.GIFCodec to do this. This animated GIF encoder was written by the Mumble
Internet Services group, to be used in Servlets or other server-side applications and so is
quite suited to JavanOwl.

42

www.manaraa.com

Person me = new Person();
me.hasHat();
me.setHatColour(blue);
me.setLegsColour(red);

Person you = new Person(200,"bob",140);
you.setBodyColour(cyan);

me.raiseArm(right);
you.raiseArm(left);

House mine = new House();
mine.hasChimney();
mine.setRoofColour(green);
mine.setDoorColour(red);

Figure 5.8: Example of code that uses library objects, written in JavanOwl

A Java class that handles the creation of the animated GIFs we wrote. This class re-
ceives the list of BufferedImages created by the aspect and uses the to.mumble.GIFCodec
package to create the animated GIFs. This is done by adding each BufferedImage from the
list into an AnimGifEncoder object. The result is an animated GIF, where each frame is
a BufferedImage. The animation then displays a sequence of states of the users program,
highlighting the effects of each method or constructor call. Figure 5.9 shows the frames of
an animated GIF created by the code in Figure 5.8 which was written using JavanOwl.

Rather than creating a file on the server and writing the animated GIF to it, a servlet was
written to handle this. When a user requests a page with an animated GIF on it, the ani-
mated GIF is written directly out to the response’s OutputStream object. Doing this avoids
having to create a file on the server which could cause problems with duplicate filenames
and hard-drive space since many users may all use the system at once. Also, this avoids
problems experience with image caching in earlier versions of JavanOwl. Visualisations
play an important role in the JavanOwl system, so it was important that the visualisations
that were being shown to the user were not being cached by the browser. That would have
been very misleading and incorrect.

43

www.manaraa.com

Figure 5.9: JavanOwl animation of a user program that uses the JavanOwl API

44

www.manaraa.com

Chapter 6

Discussion

JavanOwl was created in response to all the problems identified with education in Com-
puter Science, targeting novice programmers in introductory Computer Science coursesin
in particular. It was implemented using the technologies which exhibited the largest num-
ber of benefits. In order to evaluate the effectiveness of JavanOwl as a programming tool
for beginners, these technological choices must be considered. The following is a run down
of some commonly asked questions regarding decisions made about it’s design, as well as
some answers to those questions, based on observations made.

• What are the advantages of making JavanOwl a web-based system?

• What are the advantages of using JSP as the main web programming technology for
the backend of JavanOwl?

• What are the advantages of using AspectJ to monitor the programs written by the
users?

• Is AspectJ expressive enough to capture all the data that may be required?

• How effective are the program code visualisations provided by the JavanOwl system?

• How well can JavanOwl scale for larger groups?

6.1 Web advantages

The aim of this project was to make the experience of learning to program for beginner pro-
grammers easier and more bearable. One way to do this was to target students both before
and during introductory Computer Science courses. The easiest way to gain access to this
wide a variety of people is to utilize the web to distribute the system. The Internet pro-
vides a cheap, easy and rapid method of disseminating information and applications alike.
Users do not need to own a computer — they simply need access to one. Since JavanOwl
is completely web-based and client side lightweight, requiring no plugins or applets, there
are no technical requirements involved in using it. This also includes requirements such as
CPU speed or operating system type, so any old computer with an Internet connection and
a browser will be able to run JavanOwl. Users don’t need to download or install any soft-
ware, making the system simple to begin using. This is important as the target audience for
this system, novice programmers, often don’t have much confidence with computer-usage
in general, so avoiding the need for any complicated downloads and installations may en-
courage them to use the system. Also, web usage is high amongst today’s population, even

45

www.manaraa.com

for people who suffer from a low level of technical confidence. Such people still use the
Internet to use systems such as online email services or simply to read websites. The hope
here is that by being web-based and client side lightweight, JavanOwl will help these people
make the transition from using the aforementioned services to learning to program.

The online nature of JavanOwl makes updating and maintaining it very straightforward.
Changes need only be made on the server-side and not on separate client machines. Up-
dated versions could be deployed overnight during a pre-announced time and users would
see the updated version of the system the next time they log in. This type of maintenance
then appears invisible to the users, creating a seemingly seamless updating process.

6.2 JSP advantages

JSP provides a way of adding a lot of extra value to web-based systems. As explained
in section 3.1.3, since JSP is kept and executed solely on the server side it is one of the
few existing technologies that does not cause compatibility problems. JavaScript and Java
Applets can both be used to add significant value to web-based systems, but they can both
potentially introduce problems to do with browser compatilibity and needing the user to
download relevant plugins. JSP on the other hand has allowed the major functionality of
JavanOwl to be built as well as maintaining the client side lightweight. Unlike applications
like Flash, however, JSP does not produce very high quality graphics as all we can work
with is Java’s graphics API. We have chosen to forgo the aesthetics that could have been
gained by having effulgent eye-catching graphics produced by JavaScript or Flash in order
to maintain a stable, platform and plugin independent, lightweight system.

Another major advantage of using JSP to build JavanOwl was it’s close relation to the
language that the system actually teaches — Java. Since JSP is essentially an extension of
Java for the purposes of web programming, this means that JavanOwl was created using the
same technology that it is designed to teach. The consequence of this is that the implemen-
tation of certain aspects of the JavanOwl system, such as the compile and run functionality,
was greatly facilitated. As described in section 5.2, Tomcat’s own mechanism for execut-
ing JSP was used to compile and run user-written Java code. In a sense, JavanOwl can be
thought of as an educational extension to JSP.

6.3 AspectJ advantages

We have examined a few different methods of program monitoring to collect data about
interesting events in program execution. The event-driven technique provides the benefit
that it is simple to use and can capture many types of interesting information about differene
events. Unfortunately, this method does have the disadvantage of being intrusive and thus
needing to alter the target program. In terms of JavanOwl, although this could be done, it
is not a convenient solution. An API that needs to be altered everytime more information
needs to be captured in order to produce different visualisations would not be suitable.
AspectJ provides this adequate degree of separation between the actual program code and
the code that produces the visualisations. AspectJ is also powerful enough to collect the
kind of program execution information that is required for JavanOwl.

6.4 Visualisation using AspectJ

For visualisations, the programmer really needs to decide what changes in the program state
are important enough to be visualised. The programmer can decide, depending on the task

46

www.manaraa.com

at hand, what the granularity of the data collected should be. AspectJ’s join points are pow-
erful enough to be used to capture information about many interesting events in program
execution. For the purpose of beginner programmers, the kinds of events that should be
monitored in order to obtain information that can be used to provide adequate visualisa-
tions are events such as method calls, method executions, object instantiations, constructor
executions, and field references. AspectJ can easily monitor these events using join points,
pointcuts, designators and advices. In order to capture the type and granularity of informa-
tion needed for the visualisations that JavanOwl currently produces, the main designators
used are the execution and call designators. Using pointcuts and these designators, JavanOwl
collects information about when a library class method body executes or when a library class
method is called. Thus, the names of all the interesting methods and constructors in the Ja-
vanOwl library classes, together with wildcards and logical operators, have been used in
the execution and call designators in order to monitor them in the program execution.

Visualisation developers must write the visualisation code into advices. Advice code
gets executed at the join points that have been picked out by all the pointcuts defined in the
aspect. Advices should define what the aspect should do with the captured information.
Since AspectJ is a Java extension to AOP, these advices are written in Java. This facilitates
the process of writing code to produce visualisations, as the visualisation developers do not
need to learn a new language. Java’s Graphic2D API can be used to produce sufficiently
effective visualisations.

The main advantage of using AspectJ to produce visualisations is that all this informa-
tion can be gathered without any form of intrusiveness. The target program does not need
to be modified at all — the code to generate the visualisations is kept completely separate
from the target code by residing in these aspects. Therefore, for the purposes of visualising
program code, AspectJ is a powerful tool to collect information with. It is simple to use
and maintains a good degree of separation between the code that generates the visualisa-
tions and the target program. This makes Aspectj an obvious choice for the task of creating
visualisations.

6.5 JavanOwl visualisations

The advantages gained by using visualisations in education are many. In particular, the
visualisation of the user’s program code in JavanOwl has the potential to make the pro-
gramming experience more entertaining. JavanOwl’s program code visualisations are in
the form of animated images where each frame shows a significant step in the user’s pro-
gram code. The final frame is a visual representation of state that the program is in at the
end of it’s execution. Not only does this give the user a different view of the final state of
the program, but it also helps the user see what effect each important event (such as method
invocations or object construction) actually has on the overall state of the program. It also
highlights the order in which the statements in their code actually occur, visibly showing
the user the nature of top-down nature procedural program execution. This is particularly
important when control structures such as if statements or loops are used in the code, as
these cause the flow of control to be invisibly passed around rather erratically.

6.6 Scalability

Since JavanOwl is web-based, it can be used by many users at the same time. By providing
an online discussion forum, JavanOwl allows for a collaborative community of file and idea
sharing to exist. This means that users can work together on JavanOwl, building upon

47

www.manaraa.com

eachother’s projects and helping eachother learn. The system is therefore caters for larger
groups well.

48

www.manaraa.com

Chapter 7

Experience and Usability Studies

7.1 Science Experience

Every year our university hosts a “science experience” week for secondary school students.
During the week there are various activities, and our school hosts an activity on learning to
program. We have traditionally used Java and a conventional programming environment,
but recently we ran the activity using JavanOwl.

The students were from various nearby schools, and were in their 3rd year of high school
making them around 15 years old. This is the type of person we would like to support
in getting more experience in programming before they arrive at university. The students
came from a wide range of backgrounds and had varying abilities, but all had chosen to
participate in the science experience.

Altogether there were about 70 students who took part in our activity on learning to
program. The students worked in 8 separate sessions of gender-mixed groups of about 8
students each. Each session was one hour long, and each student participated in only a
single session. During the sessions, the students were brought into a computer lab where
after a brief explanation of some basic OO terminology and some simple Java commands
and syntax (such as object creation and method calls), they were encouraged to log into the
system and attempt to write some code that would utilize the classes provided.

A library containing two simple classes was provided: a ‘stickperson’ class and a ‘house’
class. These two classes were created to provide interesting exercises for the students to
play with. When objects of these classes were created, an image of the appropriate object
was shown in the ‘output’ side of the split-screen of JavanOwl. The students were able to
modify the method calls and then re-run the programs generating other images. Overall, the
feedback was rapid and visual as the objects they created were pictorially shown as soon as
they pressed ‘run’, provided their code was correct.

At the end of each one hour session, the students were asked to complete a simple ac-
tivity evaluation survey. This chapter presents some observations arising from the sessions,
followed by some consideration of the results of the evaluation survey.

It is worth noting that from an administrative point of view, the use of the web reduced
the administative work needed: for example, no special setup or cleanup was needed for
individual computers or even user accounts.

49

www.manaraa.com

7.2 Science Experience Results

7.2.1 Observations

As expected, all students wrote incorrect code at some point during the exercise. At the
time we ran these sessions, we had considered utilizing a Java parser to catch errors in
user code and to present them to users in a user-friendly manner, but this had not yet been
implemented. Therefore, if a user attempted to ‘Run’ incorrect code, the browser would
forward them a relatively unfriendly raw JSP ‘Error’ page, crudely formatted, that showed
a terse error message, the line number of the error, and a detail stack trace. We were not
happy about this, but had not had to time to improve it, so we stood by apprehensively.

We observed the following behaviour : students would write one or two lines of code,
attempt to run it, and when faced with the ‘Error’ page, they would treat it as a web page
error and immediately click the browser’s ‘back’ button. It appeared that they did not read
the details of their errors at all. When gently questioned about this behaviour, most students
claimed that they did not need or want to look at the details in the ‘Error’ page because they
felt that it was enough to examine the last line of code they had entered since their code
had worked before they had added that line. This highlights an important usability issue
regarding errors, which has lead us to conclude that it suffices to display only the first error
in user code and allow users to manually fix that one error in the code. Novice programmers
don’t want to see detailed screens showing error stack traces. But they do have a strategy
for coping that we can support.

All but one student claimed to use the Internet at least once a week. This point supports
the decision to use the web to deploy JavanOwl through a web-browser interface. Since
JavanOwl is targeted at novice programmers, who may not feel very comfortable using or
installing new software, it is important that their attention is focused on learning to program,
not on learning how to use the new application. Since Internet connectivity has skyrocketed
in the past few years, more and more people have experienced the Internet in one way or
another. This means that in general, people feel relatively comfortable using web browsers
and thus JavanOwl. This was common to al the sessions and caused us to reflect on what we
were seeing. For example, we did not have to explain how to use a web browser, fill in web
forms, or click the ‘back’ button. This is why the error pages were relatively unproblematic:
the students were used to clicking on web links that led to error pages: their already learned
response was to ignore the detail of the error page, but instead to hit the ’back’ button and
re-assess what they had done.

The fact that the students would generally write one or two lines of code and would
immediately attempt to run it indicates that they like the sense of immediate satisfaction
and feedback provided by such a system. Even when their code worked well, they enthu-
siastically tinkered with the code, changing parameters, methods, and control flow, then
watched the picture change: they repeated this throughout the session, experimenting more
and more. This corresponds to Tanimoto’s concept of ‘liveness’, which postulates the advan-
tages of immediate semantic feedback automatically provided during programming [21].
Users write a bit of code and see immediately what effect that bit of code had on the state of
the program. This highlights the benefits of having a split-screen system where the user can
edit their code on the left and simultaneously see the output of their code on the right.

Lastly, in what was scheduled for an hour, but with formalities excluded was little more
than 40 minutes, it was impressive to see that everyone did at least write programs, correct
errors, see the effects, and so engage in programming.

50

www.manaraa.com

7.2.2 Evaluation Survey Results

Evaluation surveys were distributed to all students who took part in the sessions. Overall,
31 females and 33 males filled in the surveys. The data from these surveys was collated and
carefully examined . Below are some of the results.

Figure 7.1 shows a graph depicting the differences in general computer literacy between
males and females. As expected, the females involved in the University Science Experience
had had less prior programming experience than the males. Interestingly, more females
claimed to have access to the Internet. This works well for JavanOwl because it suggests
that these students have good Internet access and therefore would easily be able to use
JavanOwl.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Has used
Internet

Internet access -
Home

Internet access -
School

Internet access -
Work

Has prior
programming
experience

%
 A

tte
nd

ee
s

Female

Male

Figure 7.1: General computer Usage

Figure 7.2 shows a graph that illustrates the success rates of the exercises/tasks that the
students performed during the Science Experience. The graph shows that overall, students
found the tasks that were set easy to complete. Amazingly, even though the majority of these
students had never programmed code before, they were able to write working code that cre-
ated objects and ran methods in less than an hour and even rated these tasks as ‘easy’. Writ-
ing loops was considered to be only ‘moderately hard’ by students who attempted them.
Another interesting observation is that females found all the different programming tasks
only slightly harder than the males in the group. These results show that JavanOwl provides
an easy environment for beginner programmers to learn how to program.

Other results show that most participants had no prior programming experience. In par-
ticular, the females involved in the Science Experience had only ever had experience writing
HTML code and no actual programming languages. This again suggests that females are
comfortable with the Internet and web-browsers, making JavanOwl an ideal place for them
to begin learning how to program a more advanced OO programming language such as

51

www.manaraa.com

0

0.5

1

1.5

2

2.5

3

Ease of writing
working code

Ease of creating
objects

Ease of running
methods

Ease of writing loops

Female

Male

E
as

y
M

od
er

at
el

y

ha
rd

D

iff
ic

ul
t

Figure 7.2: Writing code using JavanOwl

Java. Almost all students involved in the Science Experience indicated that they would use
JavanOwl again if it were available, with slightly more enthusiasm from the females in the
groups.

7.3 Heuristic Evaluation

Heuristic evaluation is a discount usability engineering method for a quick and easy evalu-
ation of a user interface design, as described by Jakob Nielsen [36]. Heuristic evaluations are
performed as part of an iterative design process as they highlight potential usability prob-
lems in the interface design of the system being examined. It is quick and easy — anywhere
between 1 and 4 evaluators is sufficient. This type of evaluation is formative rather than sum-
mative. It is designed to highlight as many problems that can or must be addressed during
later iterations in the design process as possible rather than evaluating how well the system
works.

The process of performing a heuristic evaluation on an application involves 4 phases.
The first step is a pre-training session during which the evaluators are given a chance to
familiarise themselves with the application. The second step is the actual evaluation of the
application. One testing technique commonly employed is to supply evaluators with a truly
representative scenario that lists the various steps that would typically be taken in a usage
of JavanOwl. During the evaluation step, the evaluators perform the tasks detailed in the
scenario they are given, with or without the observer present. They are requested to make
notes of the usability problems they find, keeping in mind the ten heuristic guidelines shown
in Figure 7.3. The third step involves a debriefing session during which the evaluators can

52

www.manaraa.com

discuss their findings and reflect on possible solutions for the problems they found. The last
step of a typical heuristic evaluation is to collate the feedback from the evaluators, compiling
a list of all the usability problems that were discovered during the evaluation together with
the relevant affected heuristics and the respective severities of the problems. These severities
are based on a scale of 0-4, judged on the descriptions given in Figure 7.4.

Heuristic evaluations highlight specific usability problems encountered during the use
of an application. The severity ratings that are attached to each problem provide the tester
with a priority list of which problems are critical to application usage and which can be
ignored if there is a lack of time to work on the project. By including the heuristics that are
affected by each problem in the results, it enables heuristic based solutions to be found. This
may result in solutions that more directly solve the issues found.

1. Visibility of system status
The system should always keep users informed about what is going on, through appropriate
feedback within reasonable time.

2. Match between system and the real world
The system should speak the users’ language, with words, phrases and concepts familiar to the
user, rather than system-oriented terms. Follow real-world conventions, making information
appear in a natural and logical order.

3. User control and freedom
Users often choose system functions by mistake and will need a clearly marked ”emergency
exit” to leave the unwanted state without having to go through an extended dialogue. Support
undo and redo.

4. Consistency and standards
Users should not have to wonder whether different words, situations, or actions mean the
same thing. Follow platform conventions.

5. Error prevention
Even better than good error messages is a careful design which prevents a problem from oc-
curring in the first place.

6. Recognition rather than recall
Make objects, actions, and options visible. The user should not have to remember information
from one part of the dialogue to another. Instructions for use of the system should be visible
or easily retrievable whenever appropriate.

7. Flexibility and efficiency of use
Accelerators – unseen by the novice user – may often speed up the interaction for the expert
user such that the system can cater to both inexperienced and experienced users. Allow users
to tailor frequent actions.

8. Aesthetic and minimalist design
Dialogues should not contain information which is irrelevant or rarely needed. Every extra
unit of information in a dialogue competes with the relevant units of information and dimin-
ishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors
Error messages should be expressed in plain language (no codes), precisely indicate the prob-
lem, and constructively suggest a solution.

10. Help and documentation
Even though it is better if the system can be used without documentation, it may be necessary
to provide help and documentation. Any such information should be easy to search, focused
on the user’s task, list concrete steps to be carried out, and not be too large.

Figure 7.3: Jakob Nielsen’s Ten Usability Heuristics

53

www.manaraa.com

0 - I don’t agree that this is a usability problem at all.

1 - Cosmetic problem only: need not be fixed unless extra time is available on project.

2 - Minor problem: fixing this should be given low priority.

3 - Major problem: important to fix, should be given high priority.

4 - Usability catastrophe: imperative to fix this before product can be realeased.

Figure 7.4: Severity Ratings

7.3.1 Experiment

Four evaluators were chosen to perform a Heuristic Evaluation of JavanOwl. Each evalua-
tor was presented with a scenario, a list of Nielsen’s Ten Usability Heuristics (see Figure 7.3)
and a description of the severity rating. The scenario was constructed by analysing tasks
that actual users in the Victoria Science Experience performed so as to make an accurate
approximation of the eventual usage of JavanOwl. Since JavanOwl provides many different
features, the scenario was also designed to test every part of the system functionality in the
hope of picking up as many problems as possible. Each evaluator was asked to perform the
steps outlined in the scenario shown in Figure 7.5, recording any problems they came across
at any stage during their usage, making particular reference to which of the ten heuristics
described by Nielsen the problem pertained to. The evaluators were also asked to comment
on any other problems they found that were not related to any of the ten heuristics. Until
the results of the usability testing had all been completed, collected and collated, the eval-
uators were asked not to discuss among one another their findings. This is important as it
ensures that the problems stated by each evaluator were their original feelings upon using
the system, not influenced by other’s comments.

Once all the evaluations were completed and returned, the results were collated. A list
of all the usability problems found in the JavanOwl system was compiled. This list was
presented to the evaluators, who proceeded to give each problem a severity rating. These
results are discussed in the following section.

54

www.manaraa.com

1. Create a new user account and log into the system.

2. Write a program that uses does the following:

• Creates a Person object

• Puts a hat on the Person object

• Sets the hat colour to be green

Save this program as ’first’ and run.

3. Edit your program so that it now also does the following:

• Raises the left and right arms of the Person object.

• Creates a new Person object, of a different height and size.

• Changes the second Person object’s body colour to blue.

Run this program.

4. Choose the Stack data structure to study. Run the code provided.

5. Edit the code provided so that it does the following:

• Pushes ”1” into the stack

• Pushes ”2” into the stack

• Pops an element off the stack

• Peeks at the next element

• Pushes ”3” into the stack

Run this program.

6. Write your own class. Call it ’Greetings’. Define methods that do the following:

• returns a string that says ”hello world!”

• outputs to the screen the line ”goodbye world!”

• outputs to the screen the word ”hi” as many times as the user specifies (make it take an
integer as a parameter)

Save this class as ’Greetings’.

7. Write a program that uses the Greetings class. Make it use 2 of the 3 methods defined in the
Greetings class.
Save this program as ’usesGreetings’ and run.

8. Edit your program called ’first’. Add to it so that it does the following:

• Creates a House object

• Puts a chimney on the House object

• Sets the colour of the windows of the House object to blue.

Save this program as ’second’ and run.

9. Delete your program called ’first’ from the system.

10. Log out of the system.

Figure 7.5: Scenario used in Heuristic Evaluation of JavanOwl

55

www.manaraa.com

7.3.2 Results and Evaluation Summary

The table of results of the heuristic evaluation that was performed on JavanOwl is shown
in Figure 7.6. The table is structured into sections corresponding to particular functions of
JavanOwl since the scenario was designed to test every part of JavanOwl’s functionality.
The formative nature of this evaluation has highlighted several usability problems that can
and should be addressed in future work with JavanOwl. However, the average severity of
these problems is only 2, that is, on average, they were judged to be cosmetic problems that
only needed to be fixed if extra time were available on the project. Only one usability con-
cern with severity 4 was found: an unfriendly error page. This problem can easily be fixed
and was not found to affect the actual usability of JavanOwl during the Science Experience
earlier in the year. Therefore, apart from minor problems, the heuristic evaluation produced
overall promising results of JavanOwl’s usability.

Below is a more detailed description of the most prominent issues found within the main
sections of JavanOwl’s functionality.

Navigation within the JavanOwl System

Positive comments were made regarding the overall effect of the design of the interface of
JavanOwl. The colour schemes and general design were complimented. However, one of
the more prominent concerns regarding the facilitation of navigation in JavanOwl was the
fact that the API and Forum links takes the user to a page that is hard to leave from without
pressing the ‘Back’ button in the browser. This can cause users to feel trapped and confused.
The evaluators agreed that the API and Forum links should perhaps open these pages in
new browser windows. Another suggestion was to utilize frames in the JavanOwl system
so that links such as these could be opened in the current browser window without forcing
the user to leave their current task. Another issue that was found was that the evaluators felt
that the navigation menu was not always particularly easy to see. Although the navigation
bar was kept in the same location in the header of every page that it was included in, users
felt it was sometimes hard to follow. The text used for the links in the navigation bar was
coloured white and underlined. The white colour caused some visual problems and the fact
that some other non-link text was also underlined in other places in JavanOwl caused some
inconsistency concerns. Again, these types of problems would not be hard to change as they
are features in the design of the HTML.

Write and Run Code Functionality

The ability to write and run code through JavanOwl is perhaps the most important feature
of the JavanOwl system. Therefore, it was important to catch as many problems as possi-
ble within this section to ensure that later versions of JavanOwl are as stable and usable as
possible. Evaluators felt that within this section, one of the most prominent problems was
that once a user arrives at the ‘Write Code’ page in JavanOwl for the first time, it is unclear
how they should go about writing some code. This page does not provide any template
programs or classes automatically. JavanOwl’s Help section does provide sample programs
and classes that users can simply copy and paste into the form provided in the Write Code
section. They can then save, edit and run this code. Although the evaluators did discover
this after searching through the Help section, they believe it would be simpler for the user
if they could just come into the Write Code section and be presented with a template pro-
gram or code straight away. Another problem found in regarding the write and run code
functionality was the fact that some options were available even when they most definitely
did not apply. For example, the ‘Run Code’ button is available even when users are editting

56

www.manaraa.com

a class. Clicking on the ‘Run Code’ button in this situation would cause an error. It would
be more user-friendly if these options were simply not deactivated or not visible at all to the
user when they are not applicable. This type of problem can be fixed using standard HTML
and JSP.

Visualisations

The evaluators had many positive remarks concerning the visualisations of program code
provided by JavanOwl. They expressed the value in providing animated visualisations, as
these helped show the exact effect of each method call well. The only problems that were
found were regarding how much information to put into the visualisations. Adding into
the visualisations the line of code that is being executed and thus causing the effect being
witnessed would be beneficial to the users. Some of the terminology used in the Stack visu-
alisations were not adequate according to the evaluators. The term ’Holding Bay’ was used
to describe a ‘theoretical’ place where stack elements are held before or after push or pop
methods are executed. This is not a typical term used in describing such a place and may
need to change. Fortunately, since the code that is responsible for drawing these visuali-
sations has been kept separate from the target program code, changes in the visualisations
such as these would be easy to make.

57

www.manaraa.com

Problem Heuristic Evaluator Severity

REGISTRATION AND LOGIN
When registration fails, data entered disappears and must be re-entered 1 2 3
Login not automatic after registration 7 3.4 1
Terms used in registration are not clear enough 1,2,10 1.3 2

NAVIGATION
Navigation menu not always clear 1,6 1,4 2
API and foum should open in a different window 3,7 1,2,3,4 3
Underline texts sometimes links, sometimes not 4 2,3 3
Unnecessary section headings 3,4,8 1,2,4 1
Inconsistent naming of buttons and terms 4 1 2

HELP AND OOP CONCEPTS
Unfriendly presentation of Help section 2 2 2
Insensitive wording in Help section 2,9,10 1,3 2
Help not helpful on what JavanOwl actually offers 1,10 1,2 3
Difference between OOP Concepts section and Help section unclear 8,10 2,3 1
Language used in Help may not be suitable for novice programmers 10 3 3
Methods available in stack description are misleading 5 1 2
Unfriendly error page 2,9 1,3 4

WRITE AND RUN CODE
Unclear how to start coding - no template program or class shown 5,7 2,3,4 3
Empty drop down list and Open buttons available when no files or classes 1,2,5,10 1,2 2
System forgets which classes you previously used in a program 5,6,7 1,2 3
Code not automatically saved when user leaves Write code page 3,5 2,3 3
Length of wait for response increases with size of program when run 1 3 1
Object drawn off side of image doesn’t create an error 5 3 3
Stack code appears in Write code section and causes problems - bug 3 3
Hard to syntax check class without writing a program that uses it 5,9 3 2
Problem with same named classes - program uses only the original class 5 3 2
Not much feedback after ’Save Code’ is clicked 1 1 1
No accelerators to view help and methods available on write code page 6,7 1,2,3 2
No ‘Clear’ or ‘New class’ or ‘New program’ buttons 2,3,4,6,7,9 1 3
No ability to tab inside text box in browser 3,4,8 1,3 2
Option to Run Code available even when editting a class 2,5,6 1,2,3 3

API
Some methods in API badly named (hasHat) 10 3 2
API method parameters, units not explained well (position, colours) 8,10 2,3,4 2
Methods that should not be visible to user are documented in API 5 2 3
No example code in API 10 3 2

MANAGING FILES
Display code bug when displaying code that is a special HTML tag 1 2 2

ERROR MESSAGES ABOUT CODE
Error messages about code not quite friendly and helpful enough 9 2,3 2
Error message sometimes misleading (missing ; points at next line) 2,5,9 2,3 3

VISUALISATION
Unclear what the ’peek’ method does in Stack visualisations 1 1 2
Use of term Holding Bay in Stack visualisation confusing 1,2,6,8 2,3,4 3
Line of code being executed not displayed in animation 2 3 2

Figure 7.6: Heuristic Evaluation of JavanOwl Table of Results

58

www.manaraa.com

Chapter 8

Conclusions

This project has presented a study of the possible technologies that can be used to remedy
the current problems associated with education in Computer Science. Online functional-
ity and program code visualisations were found to be two key elements in the design of
an effective educational programming tool. Aspect Oriented programming was explored
as a program monitoring technique used to build visualisations for educational purposes.
Following this, the design and implementation of JavanOwl, a web-based programming en-
vironment designed to teach Java through program code visualisations, are then introduced.
A discussion of the effectiveness of the technologies used in JavanOwl were evaluated and
presented. The results and observations of an actual experience of using JavanOwl to intro-
duce Java programming to novice programmers were recounted. Finally, a heuristic evalu-
ation was used to conduct a formative study on the usability of JavanOwl and its outcomes
were discussed herein.

8.1 Contributions

• We built JavanOwl, a web-based programming tool that teaches Java using program
code visualisations. JavanOwl was carefully designed to maximise the advantages
of online systems while at the same time magnifying the educational benefits gained
in using program code visualisations. This is a unique combination of key design
elements that has not been vastly explored in the past. We successfully used JavanOwl
to teach a group of approximately 70 novice programmers how to program.

• The results we have presented in this report show that JavanOwl works. The Science
Experience provided qualitative evidence that students who used JavanOwl felt it was
an easy and entertaining system to use. Although the majority of students who partic-
ipated in the Science Experience had no prior programming experience, their overall
impression was that programming is ‘easy’ to do with JavanOwl. Even the more com-
plex programming structures such as loops were considered to be only ‘moderately
hard’ to do with JavanOwl. The females in the groups fared just as well as the males,
allowing them to maintain a reasonably high level of confidence when dealing with in-
troductory Computer Science concepts. The results of a formative study of JavanOwl’s
usability was performed using a heuristic evaluation of the system. This evaluation
did not identify any major usability concerns.

• JavanOwl has been built using a careful balance of technologies that were found to best
support the key design elements identified. JavanOwl provides support for learning a
real language, Java, with no special software needing to be installed on learners’ com-

59

www.manaraa.com

puters. It does not impose any special requirements, apart from having a basic web
browser, on the client side as the system was designed to be client side lightweight.
The system therefore supports access from anywhere — school, home, Internet cafes,
allowing early learners to practice their programming skills and gain a critical prior
familiarity with the subject.

• JavanOwl explores the use of Aspect Oriented programming in Computer Science ed-
ucation — in particular, the application of AspectJ to produce visualisations of pro-
gram code. The JavanOwl system also examines how an online compiler and run-
time environment can be provided without any restrictions or requirements on the
client side. Above all, JavanOwl is an attempt at building a new educational program-
ming tool that incorporates both these key design elements without disadvantaging
eachother.

8.2 Comparison With Related Work

In comparison to other existing educational programming tools, JavanOwl provides both the
advantages of client side lightweight web-based systems such as ubiquitous access as well
as with the benefits of animated program code visualisations. This technological combina-
tion has not been explored much in existing systems. In particular, BlueJ, LearningWorks
and Jeroo, systems which provide good program code visualisations, do not function over
the Internet. On the other hand, www.publicstaticvoidmain.com and ELP are both
online systems, but they do not use program code visualisations. Jeliot is one system that is
both online technology and supports program code visualisation, but its reliability on Java
applets makes it client side heavyweight, imposing browser constraints and other technical
requirements on the client machine. This makes JavanOwl different to the existing educa-
tional programming tools. The technologies employed in building JavanOwl make it easy
to use, with a more suitable tool for the target audience.

8.3 Future Work

This project has essentially laid the groundwork for future extensions to be made to Ja-
vanOwl. The research conducted examined various approaches towards helping education
in Computer Science, attempting to implement in JavanOwl those which were found the
most beneficial. Further research into the topics covered in this project, namely the use of
the Internet to deliver a programming environment and the use of visualisations to teach
programming, may discover new techniques that can be incorporated and tested through
JavanOwl. An example result of this is JavanOwl++, a programming tool that was built us-
ing JavanOwl technology. A description of JavanOwl++ is included in Appendix A. Other
possible additions to the JavanOwl techology are described in the sections below.

8.3.1 JavanOwl API

JavanOwl currently has a small library of classes that users can work with. These classes
all provide visualisations. This JavanOwl API was constructed as a proof-of-concept, to
show that a more complete library could be also be created without too much effort. More
classes to work with would provide users with a more interesting set of tools. They could
experiment with more objects, gaining experience while using a more entertaining system.

60

www.manaraa.com

8.3.2 Traces and Visualisation Library

Currently, JavanOwl creates only one type of visualisation of user code. It depicts a graph-
ical representation of a trace of the execution of their program. A simple extension to Ja-
vanOwl would allow the user to view the trace of their program execution differently. The
user could be given a choice of different visualisations to view, ranging from other graphical
visualisations of the program trace or even a tree-structured textual trace.

Once aspects have been written to monitor some particular classes, creating different
forms of output of trace information is simple to encode. This is because the same data, re-
garding calls to methods and constructors, is collected for all visualisations of traces. There-
fore, all that would need to change would be how this information is manipulated and
formatted for the user to view. A library of manipulations of this captured data for visual-
isation purposes could therefore be made. The aspects would monitor the user programs
through the use of pointcuts and join points, capturing required information. The advices
defined for the pointcuts would call upon a component of the visualisation library to format
the data and output it a certain way depending on the user’s choice of visualisation. The
visualisation library to do this could be written in Java and could be entirely separate from
the aspects.

This creates a degree of separation between the process of program monitoring and the
process of converting this captured data into some form of visualisation. Therefore, Java
developers — not necessarily proficient AspectJ programmers — could develop different
visualisations or representations of the captured data from the executed program. Over
time, extensive additions could be made to the current JavanOwl visualisation feature, al-
lowing many other forms of graphical or textual representations of the output of the user’s
code. One useful example application would be to create UML diagrams of user programs.

8.3.3 Support for Visualistaions of User-Written Classes

JavanOwl creates visualisations of user program code by running AspectJ aspects that mon-
itor the users program. This means, however, that the aspects that visualise library objects
must be written and weaved in with the JavanOwl API by developers before the “Tomcat”
web-server has been started and before the user can create such visualisations. An extension
to the current JavanOwl system would allow users to create visualisations of programs they
write that use their own classes, not necessarily the JavanOwl API.

8.3.4 Interactivity in User Programs

The programs that JavanOwl allows users to write and run are simple non-interactive Java
programs. When the user clicks the ’Run Code’ button, their code is processed accordingly.
Only when the program execution ends is the output of the program displayed to the user.
Future work could expand the types of programs that users are able to write and execute in
JavanOwl. Users could create and run interactive programs that keep running, effectively
simulating what Java applets can do but without the problems such as browser compatibil-
ity associated with running applets. The aim would be to continue to use visualisations with
such programs. This would increase the level of ‘Liveness’ that JavanOwl’s visualisations
currently support since users would be able to change parameters and witness the changes
in a visual representation of their program in real time.

61

www.manaraa.com

Appendix A

JavanOwl++

JavanOwl++ is an application that was built for the ‘Information Systems 409: Educational
Technology in the Age of the Virtual University’ course at Victoria University. This applica-
tion was built using the JavanOwl technology. Like JavanOwl, JavanOwl++ is also a web-
based system that is designed to help novice programmers learn how to program. It also
uses program code visualisation to more clearly depict the effects of program code. How-
ever, it provides a much higher level introduction to programming than JavanOwl. Unlike
JavanOwl, JavanOwl++ only teaches learners about object creation and object manipulation
(method calls). It does not teach them about any other form of statement, iteration or se-
lection like JavanOwl does. Also, unlike JavanOwl, JavanOwl++ does not allow the user to
write any code. JavanOwl++ works through a point-and-click graphical user interface rather
than allowing the user to write and run their own Java programs. The result of this is that
learners can create programs without needing to know any Java syntax.

A.1 Overview of Functionality

JavanOwl++ is a structured system designed for self-paced learning. A simple tutorial has
been provided as a way of leading users through the system. The main application area
provides users with a graphical interface through which they can create objects and run
methods on them. The effect of this is that users can essentially create and run their own
Java programs without actually writing any code.

A.1.1 Object Creation

Users create objects of the classes provided by clicking on the buttons labelled with class
names. This then leads the user through a sequence of steps whereby the user is invited
to enter or select the parameters required for the object constructors. Once the user has
successfully created an object, they will automatically be shown an image of their object
in what is essentially the output pane. This image is dynamically generated on the server
side according to their action. Figure A.1 shows JavanOwl++ after a user has created both a
Person and a House object and is in the process of creating another Person object.

A.1.2 Object Manipulation

Once the users have created an object, they can select the object by clicking on the graph-
ical representation of their object in the image. This then provides the user with a list of
methods available to be run on that object. The user selects a method, enters the required

62

www.manaraa.com

Figure A.1: Object Creation in JavanOwl++

63

www.manaraa.com

parameters and ‘runs’ the method. The image is then regenerated and redisplayed, graphi-
cally showing the effect of the method just run. Figure A.2 shows JavanOwl++ after a user
has run the hasHat() method on their Person object, and is attempting to now run the
setHatColour(...) method on the same Person object.

A.2 How JavanOwl++ Uses JavanOwl Technology

JavanOwl++ demonstrates that the JavanOwl technology can easily be used to build other
applications for different purposes. The same web-based technologies have been used in the
creation of JavanOwl++: JavaServer Pages (JSP), JavaBeans, Aspect-Oriented Programming
(AOP) and HTML, all used in conjunction with a JSP “Tomcat” web server. The JavanOwl++
back-end is very flexible — it will recognize and automatically allow users to use any suit-
able classes within the specified library. Currently, JavanOwl++ uses the JavanOwl library.
The program code visualisation is a dynamically generated GIF, created in the same way to
how the animated GIFs in JavanOwl were created. For the purposes of JavanOwl++ how-
ever, the visualisations are not animated. As in the JavanOwl architecture, the images are
delivered to the user through a servlet. This avoids writing any image files to the server as
well as any problems caused by caching.

Overall, although JavanOwl++ provides quite a different environment for learning how
to program than JavanOwl does, it was built using the same technology. The result of this
is that it emphasizes the power of JavanOwl’s technology and shows how it can be applied
directly to support other similar but different needs.

64

www.manaraa.com

Figure A.2: Object Manipulation in JavanOwl++

65

www.manaraa.com

66

www.manaraa.com

Bibliography

[1] M. Kölling, “Bluej - the interactive java environment.” http://www.bluej.org/.

[2] A. Goldberg, S. T. Abell, and D. Leibs, “The learningworks development and delivery
frameworks,” Communications of the ACM, vol. 40, no. 10, pp. 78–81, 1997.

[3] D. Sanders and B. Dorn, “Jeroo: a tool for introducing object-oriented programming,”
in Proceedings of the 34th SIGCSE technical symposium on Computer science education,
pp. 201–204, ACM Press, 2003.

[4] N. Truong, P. Bancroft, and P. Roe, “A web based environment for learning to
program,” in Proceedings of the Twenty-Sixth Australasian Computer Science Conference
(ACSC2003), Conferences in Research and Practice in Information Technology, 16 (M. J. Oud-
shoorn, ed.), pp. 255–264, Australian Computer Society, 2003.

[5] H. Bergsten, JavaServer Pages. O’Reily Associates, 2000.

[6] “Aspectj project.” http://eclipse.org/aspectj/.

[7] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant,
C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students,” ACM SIGCSE
Bulletin, vol. 33, no. 4, pp. 125–180, 2001.

[8] M. Guzdial, “Summary: Retention rates in cs vs. institution,” message
posted on acm sigcse moderated members list, Georgia Tech, April 23 2002.
http://listserv.acm.org/archives/wa.cgi?A2=ind0204D&L=sigcse-members&P=R112.

[9] H. Roumani, “Design guidelines for the lab component of objects-first cs1,” in Proceed-
ings of the 33rd SIGCSE technical symposium on Computer science education, pp. 222–226,
ACM Press, 2002.

[10] D. Gilligan, “An exploration of programming by demonstration in the realm of novice
programming,” Master’s thesis, School of Mathematical and Computing Sciences, Vic-
toria University of Wellington, New Zealand, 1998.

[11] E. Wallingford, “Toward a first course based on object-oriented patterns,” in Proceedings
of 27th SIGCSE Technical Symposium on Computer Science Education, March 1996.

[12] M. Ben-Ari, N. Ragonis, and R. Ben-Bassat Levy, “A vision of visualisation in teaching
object-oriented programming,” in Proceedings of Second Program Visualisation Workshop,
June 2002.

[13] J. Carrasquel, “Teaching cs1 on-line: the good, the bad, and the ugly,” in The proceedings
of the thirtieth SIGCSE technical symposium on Computer science education, pp. 212–216,
ACM Press, 1999.

67

www.manaraa.com

[14] M. Gunsher Sackrowitz and A. Parker Parelius, “Women in the introductory computer
science courses,” in Proceedings of 27th SIGCSE Technical Symposium on Computer Science
Education, March 1996.

[15] S. H. Rodger and E. L. Walker, “Activities to attract high school girls to computer sci-
ence,” in Proceedings of the twenty-seventh SIGCSE technical symposium on Computer sci-
ence education, pp. 373–377, ACM Press, 1996.

[16] C. Toynbee, “Why women drop computer science.” Department of Sociology and So-
cial Work, Victoria University, Wellington, New Zealand, 1992.

[17] T. Camp, “The incredible shrinking pipeline,” Communications of the ACM, vol. 40,
no. 10, pp. 103–110, 1997.

[18] J. Brown, P. Andreae, R. Biddle, and E. Tempero, “Women in introductory computer
science: experience at victoria university of wellington,” in Proceedings of the twenty-
eighth SIGCSE technical symposium on Computer science education, pp. 111–115, ACM
Press, 1997.

[19] K. Brodlie, J. Wood, and H. Wright, “Scientific visualisation - some novel approaches to
learning,” Integrating Technology into Computer Science Education, June 1996.

[20] B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy of sofware visual-
ization,” Journal of Visual Languages and Computing 4(3), pp. 211–266, 1993.

[21] M. M. Burnett, J. W. A. Jr., and Z. T. Welch, “Implementing level 4 liveness in declarative
visual programming languages,” in Proceedings of the 1998 IEEE Symposium on Visual
Languages, pp. 126–133, 1998.

[22] A. Goldberg, “Building a system in virtual reality with learningworks,” in Proceedings
of the 6th annual conference on the teaching of computing and the 3rd annual conference on
Integrating technology into computer science education, pp. 5–9, ACM Press, 1998.

[23] R. E. Pattis, Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley
& Sons, Inc., 1994.

[24] D. Sanders and B. Dorn, “Classroom experience with jeroo,” The Journal of Computing
in Small Colleges, vol. 18, no. 4, pp. 308–316, 2003.

[25] J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T. Tersvirta, and P. Vanninen, “Anima-
tion of user algorithms on the web,” in Proceedings of the 1997 IEEE Symposium on Visual
Languages, pp. 360–367, 1997.

[26] W. C. Inc., “Javascript origins / overview.” http://www.woodger.ca/js orig.htm.

[27] M. Hall, Servlets and JavaServer Pages. Sun Microsystems Press/Prentice Hall PTR, 1999.

[28] Sun Microsystems, JavaBeans. http://java.sun.com/products/javabeans/.

[29] R. Khaled, J. Noble, and R. Biddle, “InspectJ: Program monitoring for visualisation us-
ing aspectJ,” in Proceedings of the 26th Australasian Computer Science Conference (M. Oud-
shoorn, ed.), (Adelaide, South Australia), Australian Computer Society, 2003.

[30] G. Kiczales, “Aspect-oriented programming,” ACM Computing Surveys (CSUR), vol. 28,
no. 4es, p. 154, 1996.

68

www.manaraa.com

[31] R. Khaled, “Inspectj: Using aspectj for visualisation.” Honour’s Report, 2002.

[32] D. Mackay, R. Biddle, and J. Noble, “A lightweight web based case tool for UML class
diagrams,” in Proceedings of the 4th Australasian User Interface Conference, Conferences in
Research and Practice in Information Technology, Vol 18 (R. Biddle and B. Thomas, eds.),
(Adelaide, South Australia), Australian Computer Society, 2003.

[33] D. Leigh, “A brief history of instructional design,” 1999. http://www.pignc-
ispi.com/articles/education/brief history.htm.

[34] C. McLoughlin and L. Marshall, “Scaffolding: A model for learner support in an online
teaching environment,” in Proceedings of the Teaching and Learning Forum 2000, 2000.

[35] T. J. Project, Security Manager. Apache Software Foundation, 2002.
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/security-manager-howto.html.

[36] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1994.

69

